Weakly supervised semantic segmentation under image-level annotations is effectiveness for real-world applications. The small and sparse discriminative regions obtained from an image classification network that are typically used as the important initial location of semantic segmentation also form the bottleneck. Although deep convolutional neural networks (DCNNs) have exhibited promising performances for single-label image classification tasks, images of the real-world usually contain multiple categories, which is still an open problem. So, the problem of obtaining high-confidence discriminative regions from multi-label classification networks remains unsolved. To solve this problem, this article proposes an innovative three-step framework within the perspective of multi-object proposal generation. First, an image is divided into candidate boxes using the object proposal method. The candidate boxes are sent to a single-classification network to obtain the discriminative regions. Second, the discriminative regions are aggregated to obtain a high-confidence seed map. Third, the seed cues grow on the feature maps of high-level semantics produced by a backbone segmentation network. Experiments are carried out on the PASCAL VOC 2012 dataset to verify the effectiveness of our approach, which is shown to outperform other baseline image segmentation methods.
As a result of its important role in video surveillance, pedestrian attribute recognition has become an attractive facet of computer vision research. Because of the changes in viewpoints, illumination, resolution and occlusion, the task is very challenging. In order to resolve the issue of unsatisfactory performance of existing pedestrian attribute recognition methods resulting from ignoring the correlation between pedestrian attributes and spatial information, in this paper, the task is regarded as a spatiotemporal, sequential, multi-label image classification problem. An attention-based neural network consisting of convolutional neural networks (CNN), channel attention (CAtt) and convolutional long short-term memory (ConvLSTM) is proposed (CNN-CAtt-ConvLSTM). Firstly, the salient and correlated visual features of pedestrian attributes are extracted by pre-trained CNN and CAtt. Then, ConvLSTM is used to further extract spatial information and correlations from pedestrian attributes. Finally, pedestrian attributes are predicted with optimized sequences based on attribute image area size and importance. Extensive experiments are carried out on two common pedestrian attribute datasets, PEdesTrian Attribute (PETA) dataset and Richly Annotated Pedestrian (RAP) dataset, and higher performance than other state-of-the-art (SOTA) methods is achieved, which proves the superiority and validity of our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.