Data security has consistently been a major issue in information technology. In the cloud computing environment, it becomes particularly serious because the data is located in different places even in all the globe. Data security and privacy protection are the two main factors of user's concerns about the cloud technology. Though many techniques on the topics in cloud computing have been investigated in both academics and industries, data security and privacy protection are becoming more important for the future development of cloud computing technology in government, industry, and business. Data security and privacy protection issues are relevant to both hardware and software in the cloud architecture. This study is to review different security techniques and challenges from both software and hardware aspects for protecting data in the cloud and aims at enhancing the data security and privacy protection for the trustworthy cloud environment. In this paper, we make a comparative research analysis of the existing research work regarding the data security and privacy protection techniques used in the cloud computing.
Using Chinese data of key audit matters (KAM) reports, this study assesses whether the KAM rule improves audit quality and how KAM disclosures relate to audit quality. With textual analysis, we evaluate disclosure characteristics in detail and find that auditors report both industry-generic and firm-specific KAM. The wordings, to a large extent, are firm-specific and differ in KAM reporting components. Our empirical investigation via the pre-post and difference-in-differences analyses reveals that audit quality is improved following the mandatory rule. The cross-sectional analysis shows that the number of KAMs and disclosure characteristics (such as specificity, similarity, readability, and length) signal auditors' concern about clients' earnings quality, audit effort, and the propensity of issuing modified opinions. Overall, our paper provides some evidence on the implementation and communicative value of the new KAM reporting.
A novel Desorption Corona Beam Ionization (DCBI) source for direct analysis of samples from surface in mass spectrometry is reported. The DCBI source can work under ambient conditions without time-consuming sample pretreatments. The source shares some common features with another ionization source - Direct Analysis in Real Time (DART), developed earlier. For example, helium was used as the discharge gas (although only corona discharge is involved in the present source), and heating of the discharge gas is required for sample desorption. However, the difference between the two sources is substantial. In the present source, a visible thin corona beam extending out around 1 cm can be formed by using a hollow needle/ring electrode structure. This feature would greatly facilitate localizing sampling areas and performing imaging/profiling experiments. The DCBI source is also capable of performing progressive temperature scans between room temperature and 450 degrees C in order to sequentially desorb samples from the surface and, therefore, to achieve a rough separation of the individual components in a complex mixture, resulting in less congestion in the mass spectrum acquired. Mass spectra for a broad range of compounds (pesticides, veterinary additives, OTC drugs, explosive materials) have been acquired using the DCBI source. For most of the compounds tested, the heater temperature required for efficient desorption is at least 150 degrees C. The molecular weight of the sample that can be desorbed/ionized is normally below 600 dalton even at the highest heater temperature, which is mainly limited by the volatility of the sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.