Project Description and Overview: Objectives: Determining the overall impact of atmospheric aerosols on radiative balance requires knowledge of the relative amounts of scattering and absorbing aerosols, their distributions, and their chemical and optical properties. This proposal was a continuation of measurements of aerosol scattering and absorption begun in Mexico City in 2003 in collaboration with MCMA 2003 and continuing in the Atmospheric Science Program field study, Megacity Aerosol Experiment-Mexico City, (MAX-Mex) during March of 2006 aimed at determining the variability of aerosol optical properties. A suite of instrumentation was deployed in MAX-Mex at site TO, located in the northern part of the Mexico City Metropolitan Area, (MCMA), for the characterization of the aerosol optical properties in the field. Measurements were made of the following aerosol properties: (1) aerosol absorption as a function of wavelength, measured at two minute intervals with a 7-wavelength Aethalometer (2) aerosol scattering as a function of wavelength, measured at one minute intervals with a 3-wavelength nephelometer; 3) aerosol scattering as a function of relative humidity (RH), measured at one minute intervals with 2 single-wavelength nephelometers operated under dry (10% RH) and wet (80% RH) conditions; and 4) collection of size-fractionated aerosol samples on quartz fiber filters at 12 hour intervals (day/night) for further laboratory characterization. Aerosol filter samples were also collected at site Tl (located north of MCMA) for comparison with those collected in the city center. Preliminary results from in situ measurements have indicated an enhanced UV absorption in the afternoon over that expected from black carbon (BC) aerosols alone. These results are directly applicable to both modeling of aerosol radiative forcing and satellite optical depth retrieval algorithms. Both of these applications assume that the aerosol absorption is due only to BC with a wavelength dependence of A, " whereas results obtained in MAX-Mex show that the aerosol wavelength exponent varies over Mexico City from-0.7 to-1.5. All of the data collected in the field from the measurement sets 1-3 have been made available to the ASP community via the MILAGRO data site housed at NCAR. The laboratory characterization of aerosol samples collected in the ASP MAX-Mex field study compared results from Mexico City to samples collected at other sites, including Chicago, Little Rock, and Mt. Bachelor, OR. The project focused on obtaining complete spectral characterization of aerosols-especially their absorption characteristics as they relate to basic chemical functional groups. Particular attention was given to organics and from biogenic derived organic compounds. This included determinations of the UV-Visible-NIR characteristics of the aerosol absorption as reported as Angstrom Absorption Exponents. Correlation of these results with IR band observations of carboxylic acid, and carboxylate groups were conducted, along with past correlations with carbon...
Among the various energy-storage systems, lithium-ion capacitors (LICs) are receiving intensive attention due to their high energy density, high power density, long lifetime, and good stability. As a hybrid of lithium-ion batteries and supercapacitors, LICs are composed of a battery-type electrode and a capacitor-type electrode and can potentially combine the advantages of the high energy density of batteries and the large power density of capacitors. Here, the working principle of LICs is discussed, and the recent advances in LIC electrode materials, particularly activated carbon and lithium titanate, as well as in electrolyte development are reviewed. The charge-storage mechanisms for intercalative pseudocapacitive behavior, battery behavior, and conventional pseudocapacitive behavior are classified and compared. Finally, the prospects and challenges associated with LICs are discussed. The overall aim is to provide deep insights into the LIC field for continuing research and development of second-generation energy-storage technologies.
Li-air cells based on Li foil as an anode electrode, freestanding carbon nanotube/nanofiber mixed buckypaper as an air ͑cathode͒ electrode, and organic electrolyte were assembled. The air electrode was made with single-wall carbon nanotube ͑SWNT͒ and carbon nanofiber ͑CNF͒ without any binder. The discharge capacity was strongly dependent on both the discharge current density and the thickness of the air electrode. A discharge capacity as high as 2500 mAh/g was obtained for an air electrode at a thickness of 20 m with a discharge current density of 0.1 mA/cm 2 ; however, it was reduced to 400 mAh/g when the thickness of the air electrode was increased to 220 m. For a 66 m thick air electrode, the discharge capacity decreased from 1600 to 340 mAh/g when the discharge current density increased from 0.1 to 0.5 mA/cm 2. The scanning electron microscope images on surfaces of the air electrode from a fully discharged cell showed that the voids at the air side were almost fully filled by the solid deposition; however, the voids at the membrane side were still wide open.
Abstract. The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGEMex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to approximate the observed MCMA daytime patterns and abCorrespondence to: E. C. Apel (apel@ucar.edu) solute values of the VOC OH reactivity. The MOZART model is also in agreement with observations showing that NMHCs dominate the reactivity distribution except in the afternoon hours. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height.A northeast transport event was studied in which air originating in the MCMA was intercepted aloft with the Department of Energy (DOE) G1 on 18 March and downwind with the National Center for Atmospheric Research (NCAR) C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind; ozone was shown to be photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial extent and temporal evolution of the plume and to help interpret the observed OH reactivity. The model results generally showed good agreement with experimental results for the total VOC OH reactivity downwind and gave insight into the distributions of VOC chemical classes. A box model with Published by Copernicus Publications on behalf of the European Geosciences Union. 2354 E. C. Apel et al.: Chemical evolution of volatile organic compounds detailed gas phase chemistry (NCAR Master Mechanism), initialized with concentrations observed at one of the ground sites in the MCMA, was used to examine the expected evolution of specific VOCs over a 1-2 day period. The models clearly supported the experimental evidence for NMHC oxidation leading to the formation of OVOCs downwind, which then become the primary fuel for ozone production far away from the MCMA.
This review summarizes the progress of pre-lithiation technologies involving the fundamental research and practical application of LICs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.