This paper conducts a feasibility study regarding the use of the Wi-Fi channel state information for user recognition based on in-air handwritten signatures. A novel system for identity recognition is thus proposed to observe for distinctive signal distortions along the propagation path for different users. The system capitalizes on the vast availability of Wi-Fi signals for signal analysis without needing additional hardware infra-structure. Since the patterns of the raw Wi-Fi signals are sensitive to the signer's location, a transfer learning has been adopted to cope with the positional variation. Specifically, features trained at one position are transferred to classify signals collected at another position via a single shot retraining. A kernel and range space projection has been adopted for the single shot retraining. Our experiments show encouraging results for the proposed system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.