Af ced several cha ocedure for OF d verify the ayground, the ulti-national d mmunity effort perience on hancements. B F@TEIN virtua the emerging S Index Terms mputing, Futur 10. P. M. Thet, N. Tientrakul, J. Kim and C. Aswakul, "Emulated OpenFlow based experimental study on middle-box buffering effect for multi-path chunked video streaming,"
Structural health monitoring (SHM) is crucial for quantitative behavioral analysis of structural members such as fatigue, buckling, and crack propagation identification. However, formerly developed approaches cannot be implemented effectively for long-term infrastructure monitoring, owing to power inefficiency and data management challenges. This study presents the development of a high-fidelity and ultra-low-power strain sensing and visualization module (SSVM), along with an effective data management technique. Deployment of 24-bit resolution analog to a digital converter and precise half-bridge circuit for strain sensing are two significant factors for efficient strain measurement and power management circuit incorporating a low-power microcontroller unit (MCU), and electronic-paper display (EPD) enabled long-term operation. A prototype for SSVM was developed that performs strain sensing and encodes the strain response in a QR code for visualization on the EPD. For efficient power management, SSVM only activated when the trigger-signal was generated and stayed in power-saving mode consuming 18 mA and 337.9 μA, respectively. The trigger-signal was designed to be generated either periodically by a timer or intentionally by a push-button. A smartphone application and cloud database were developed for efficient data acquisition and management. A lab-scale experiment was carried out to validate the proposed system with a reference strain sensing system. A cantilever beam was deflected by increasing load at its free end, and the resultant strain response of SSVM was compared with the reference. The proposed system was successfully validated to use for long-term static strain measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.