Face masks are used to protect the wearer from harmful external air and to prevent transmission of viruses from air exhaled by potentially infected wearers to the surrounding people. In this study, we examined the potential utility of masks for collecting viruses contained in exhaled breath and detected the collected viruses via various molecular tests. Using KF94 masks, the inner electrostatic filter was selected for virus collection, and an RNA extraction protocol was developed for the face mask. Virus detection in worn mask samples was performed using PCR and rolling circle amplification (RCA) tests and four different target genes (N, E, RdRp, and ORF1ab genes). The present study confirmed that the mask sample tests showed positive SARS-CoV-2 results, similar to the PCR tests using nasopharyngeal swab samples. In addition, the quantity of nucleic acid collected in the masks linearly increased with wearing time. These results suggest that samples for SARS-CoV-2 tests can be collected in a noninvasive, quick, and easy method by simply submitting worn masks from subjects, which can significantly reduce the hassle of waiting at airports or public places and concerns about cross-infection. In addition, it is expected that miniaturization technology will integrate PCR assays on face masks in the near future, and mask-based self-diagnosis would play a significant role in resolving the pandemic situation.
The complex and lengthy protocol of current viral nucleic acid extraction processes limits their use outside laboratory settings. Here, we describe a rapid and reliable method for extracting nucleic acids from viral samples using a rotating blade and magnetic beads. The viral membrane can be instantly lysed using a high-speed rotating blade, and nucleic acids can be immediately isolated using a silica magnetic surface. The process was completed within 60 s by this method. Routine washing and eluting processes were subsequently conducted within 5 min. The results achieved by this method were comparable to those of a commercially available method. When the blade-based lysis and magnetic bead adsorption processes were performed separately, the RNA recovery rate was very low, and the Ct value was delayed compared to simultaneous lysis and RNA adsorption. Overall, this method not only dramatically shortens the conventional extraction time but also allows for its convenient use outside the laboratory, such as at remote field sites and for point-of-care testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.