A transient inline spiking system is a promising tool for evaluating the performance of a virus filter in continuous operation. For better implementation of the system, we performed a systematic analysis to understand the residence time distribution (RTD) of inert tracers in the system. We aimed to understand the RTD of a salt spike, not retained onto or within the membrane pore, to focus on its mixing and spreading within the processing units. A concentrated NaCl solution was spiked into a feed stream as the spiking duration (tspike) was varied from 1 to 40 min. A static mixer was employed to mix the salt spike with the feed stream, which then passed through a single-layered nylon membrane inserted in a filter holder. The RTD curve was obtained by measuring the conductivity of the collected samples. An analytical model, the PFR-2CSTR model, was employed to predict the outlet concentration from the system. The slope and peak of the RTD curves were well-aligned with the experimental findings when τPFR = 4.3 min, τCSTR1 = 4.1 min, and τCSTR2 = 1.0 min. CFD simulations were performed to describe the flow and transport of the inert tracers through the static mixer and the membrane filter. The RTD curve spanned more than 30 min, much longer than tspike, since solutes were dispersed within processing units. The flow characteristics in each processing unit correlated with the RTD curves. Our detailed analysis of the transient inline spiking system would be helpful for implementing this protocol in continuous bioprocessing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.