To better understand the phosphorus (P) cycling in an agricultural soil environment, amounts of total, organic and inorganic P in 10 agricultural soil samples were analyzed. Since a large proportion (57.8%) of the total P in the soils was in organic form, a method was developed to evaluate the mineralization rate of organic P in the soil by adding phytate to the soil and analyzing the change in water-soluble P (WSP) content after incubating it for 3 days. Moreover, the relationship between the phytate mineralization activity and bacterial biomass in 60 agricultural soils was also investigated, where the phytate mineralization activity ranged from 0 to 61.7% (average: 18.8%), and the R² value between phytate mineralization activity and indigenous bacterial biomass was 0.11 only. Phytate-degrading bacteria were isolated from the soil environment, and identified as Pseudomonas rhodesiae JT29, JT32, JT33, JT34, JT35, Pseudomonas sp. JT30, and Flavobacterium johnsoniae JT31. When P. rhodesiae JT29 and F. johnsoniae JT31 were inoculated into the agricultural soils, the phytate mineralization activities were increased up to 16 and 27 times, respectively. It was concluded that promotion of effective phytate-degrading bacterial strains could improve the sustainable P management in the agricultural soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.