Deep deterministic policy gradient algorithm operating over continuous space of actions has attracted great attention for reinforcement learning. However, the exploration strategy through dynamic programming within the Bayesian belief state space is rather inefficient even for simple systems. Another problem is the sequential and iterative training data with autonomous vehicles subject to the law of causality, which is against the i.i.d. (independent identically distributed) data assumption of the training samples. This usually results in failure of the standard bootstrap when learning an optimal policy. In this paper, we propose a framework of m-out-of-n bootstrapped and aggregated multiple deep deterministic policy gradient to accelerate the training process and increase the performance. Experiment results on the 2D robot arm game show that the reward gained by the aggregated policy is 10%–50% better than those gained by subpolicies. Experiment results on the open racing car simulator (TORCS) demonstrate that the new algorithm can learn successful control policies with less training time by 56.7%. Analysis on convergence is also given from the perspective of probability and statistics. These results verify that the proposed method outperforms the existing algorithms in both efficiency and performance.
This paper is to seek effective scheme of boiler efficiency optimization, it uses Artificial Bee Colony (ABC) algorithm to optimize boiler efficiency based on the model of boiler combustion efficiency. First, an optimization model of boiler efficiency, which takes boiler efficiency function as optimization objective, is set up according to the heat loss of boiler combustion. Moreover, the operating parameters affecting boiler efficiency is determined. Then ABC algorithm is used to solve the optimal value of boiler efficiency. The result of the research shows that the optimization of boiler efficiency based on ABC algorithm can quickly obtain optimal parameters for running boiler, so that the optimal boiler efficiency can be got.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.