Mungbean is an economically important crop which is grown principally for its protein-rich dry seeds. However, genomic research of mungbean has lagged behind other species in the Fabaceae family. Here, we reported the complete chloroplast (cp) genome sequence of mungbean obtained by the 454 pyrosequencing technology. The mungbean cp genome is 151 271 bp in length which includes a pair of inverted repeats (IRs) of 26 474 bp separated by a small single-copy region of 17 427 bp and a large single-copy region of 80 896 bp. The genome contains 108 unique genes and 19 of these genes are duplicated in the IR. Of these, 75 are predicted protein-coding genes, 4 ribosomal RNA genes and 29 tRNA genes. Relative to other plant cp genomes, we observed two distinct rearrangements: a 50-kb inversion between accD/rps16 and rbcL/trnK-UUU, and a 78-kb rearrangement between trnH/rpl14 and rps19/rps8. We detected sequence length polymorphism in the cp homopolymeric regions at the intra- and inter-specific levels in the Vigna species. Phylogenetic analysis demonstrated a close relationship between Vigna and Phaseolus in the phaseolinae subtribe and provided a strong support for a monophyletic group of the eurosid I.
BackgroundMungbean is an important economical crop in Asia. However, genomic research has lagged behind other crop species due to the lack of polymorphic DNA markers found in this crop. The objective of this work is to develop and characterize microsatellite or simple sequence repeat (SSR) markers from genome shotgun sequencing of mungbean.ResultWe have generated and characterized a total of 470,024 genome shotgun sequences covering 100.5 Mb of the mungbean (Vigna radiata (L.) Wilczek) genome using 454 sequencing technology. We identified 1,493 SSR motifs that could be used as potential molecular markers. Among 192 tested primer pairs in 17 mungbean accessions, 60 loci revealed polymorphism with polymorphic information content (PIC) values ranging from 0.0555 to 0.6907 with an average of 0.2594. Majority of microsatellite markers were transferable in Vigna species, whereas transferability rates were only 22.90% and 24.43% in Phaseolus vulgaris and Glycine max, respectively. We also used 16 SSR loci to evaluate phylogenetic relationship of 35 genotypes of the Asian Vigna group. The genome survey sequences were further analyzed to search for gene content. The evidence suggested 1,542 gene fragments have been sequence tagged, that fell within intersected existing gene models and shared sequence homology with other proteins in the database. Furthermore, potential microRNAs that could regulate developmental stages and environmental responses were discovered from this dataset.ConclusionIn this report, we provided evidence of generating remarkable levels of diverse microsatellite markers and gene content from high throughput genome shotgun sequencing of the mungbean genomic DNA. The markers could be used in germplasm analysis, accessing genetic diversity and linkage mapping of mungbean.
To obtain more information on the Hevea brasiliensis genome, we sequenced the transcriptome from the vegetative shoot apex yielding 2 311 497 reads. Clustering and assembly of the reads produced a total of 113 313 unique sequences, comprising 28 387 isotigs and 84 926 singletons. Also, 17 819 expressed sequence tag (EST)-simple sequence repeats (SSRs) were identified from the data set. To demonstrate the use of this EST resource for marker development, primers were designed for 430 of the EST-SSRs. Three hundred and twenty-three primer pairs were amplifiable in H. brasiliensis clones. Polymorphic information content values of selected 47 SSRs among 20 H. brasiliensis clones ranged from 0.13 to 0.71, with an average of 0.51. A dendrogram of genetic similarities between the 20 H. brasiliensis clones using these 47 EST-SSRs suggested two distinct groups that correlated well with clone pedigree. These novel EST-SSRs together with the published SSRs were used for the construction of an integrated parental linkage map of H. brasiliensis based on 81 lines of an F1 mapping population. The map consisted of 97 loci, consisting of 37 novel EST-SSRs and 60 published SSRs, distributed on 23 linkage groups and covered 842.9 cM with a mean interval of 11.9 cM and ∼4 loci per linkage group. Although the numbers of linkage groups exceed the haploid number (18), but with several common markers between homologous linkage groups with the previous map indicated that the F1 map in this study is appropriate for further study in marker-assisted selection.
Background: Allele-specific (AS) Polymerase Chain Reaction is a convenient and inexpensive method for genotyping Single Nucleotide Polymorphisms (SNPs) and mutations. It is applied in many recent studies including population genetics, molecular genetics and pharmacogenomics. Using known AS primer design tools to create primers leads to cumbersome process to inexperience users since information about SNP/mutation must be acquired from public databases prior to the design. Furthermore, most of these tools do not offer the mismatch enhancement to designed primers. The available web applications do not provide user-friendly graphical input interface and intuitive visualization of their primer results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.