The measurement of spatial accessibility of fire services is a key task in enhancing fire response efficiency and minimizing property losses and deaths. Recently, the two-step floating catchment area method and its modified versions have been widely applied. However, the circle catchment areas used in these methods are not suitable for measuring the accessibility of fire services because each fire station is often responsible for the fire incidents within its coverage. Meanwhile, most existing methods take the demographic data and their centroids of residential areas as the demands and locations, respectively, which makes it difficult to reflect the actual demands and locations of fire services. Thus, this paper proposes a fixed-coverage-based two-step floating catchment area (FC2SFCA) method that takes the fixed service coverage of fire stations as the catchment area and the locations and dispatched fire engines of historical fire incidents as the demand location and size, respectively, to measure the spatial accessibility of fire services. Using a case study area in Nanjing, China, the proposed FC2SFCA and enhanced two-step floating catchment area (E2SFCA) are employed to measure and compare the spatial accessibility of fire incidents and fire stations. The results show that (1) the spatial accessibility across Nanjing, China is unbalanced, with relatively high spatial accessibility in the areas around fire stations and the southwest and northeast at the city center area and relatively low spatial accessibility in the periphery and boundary of the service coverage areas and the core of the city center; (2) compared with E2SFCA, FC2SFCA is less influenced by other fire stations and provides greater actual fire service accessibility; (3) the spatial accessibility of fire services is more strongly affected by the number of fire incidents than firefighting capabilities, the area of service coverage, or the average number of crossroads (per kilometer). Suggestions are then made to improve the overall spatial access to fire services.
Social media has been a vital channel for communicating and broadcasting disaster-related information. However, the global spatiotemporal patterns of social media users’ activities, interactions, and connections after a natural disaster remain unclear. Hence, we integrated geocoding, geovisualization, and complex network methods to illustrate and analyze the online social network’s spatiotemporal evolution. Taking the super typhoon Haiyan as a case, we constructed a retweeting network and mapped this network according to the tweets’ location information. The results show that (1) the distribution of in-degree and out-degree follow power-law and retweeting networks are scale-free. (2) A local catastrophe could attract significant global interest but with strong geographical heterogeneity. The super typhoon Haiyan especially attracted attention from the United States, Europe, and Australia, in which users are more active in posting and forwarding disaster-related tweets than other regions (except the Philippines). (3) The users’ interactions and connections are also significantly different between countries and regions. Connections and interactions between the Philippines and the United States, Europe, and Australia were much closer than in other regions. Therefore, the agencies and platforms should also pay attention to other countries and regions outside the disaster area to provide more valuable information for the local people.
Outdoor thermal comfort (OTC) is critical for public health, labor productivity, and human life. Growing extreme heat events caused by climate change have a serious impact on OTCs, especially in urban areas. Quantitatively characterizing and evaluating the spatiotemporal changes in OTCs are essential, and more applications are needed in urban agglomerations. Therefore, taking the Beijing‐Tianjin‐Hebei (BTH) urban agglomeration as the study area, this study aimed to quantitatively assess the summer regional OTC from 1981 to 2020. First, the Universal Thermal Climate Index (UTCI) was used as the indicator of daily thermal stress, and then a Composite Thermal Comfort Score was proposed to evaluate the long‐term, summertime, regional OTC considering the extent, duration, and intensity of daytime and nighttime thermal stress. The results showed that (a) the increase in UTCI (0.32°C/10a at daytime and 0.21°C/10a at nighttime) and heat stress frequency (0.88 at daytime and 0.39 d/10a at nighttime) were manifested over BTH, indicating a worse OTC. Spatial and temporal heterogeneity was also demonstrated. (b) The general OTC showed a decreasing north‐south gradient pattern. At daytime, the northern mountainous zone presented the best OTC, the southern plain zone, especially Hengshui, Langfang, and Cangzhou, showed the worst. At nighttime, the mountain‐plain transition zone showed the best OTC, the northern mountainous zone showed the worst since more cold stress occurred. Our findings will be useful in informing climate change adaptation strategies to ensure urban resilience as extreme heat increases in the context of climate change.
The global public interest in a natural disaster event will help disaster-stricken areas obtain post-disaster international relief and assistance. However, knowledge gaps still exist in regard to global online social responses and their socioeconomic influencing factors. We used big social media data regarding the 2013 Super Typhoon Haiyan to explore global online social responses and to investigate the socioeconomic factors influencing this behavior based on the Geographical Detector (Geodetector) model and geographically weighted regression (GWR) model. The results show that global online social responses have little relation with geographical distance and follow the disaster’s development. In addition to the most response in the disaster-affected countries, Western countries and neighboring countries have more online social response to the disaster than other regions. Among all the influencing factors, economic factors have the strongest effect on public interest both before and after the typhoon’s landfall. Our findings indicate that online social users are of great potential for volunteers and donors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.