Public transport plays an important role in developing sustainable cities. A better understanding of how different public transit modes (bus, metro, and taxi) interact with each other will provide better sustainable strategies to transport and urban planners. However, most existing studies are either limited to small-scale surveys or focused on the identification of general interaction patterns during times of regular traffic. Transient demographic changes in a city (i.e., many people moving out and in) can lead to significant changes in such interaction patterns and provide a useful context for better investigating the changes in these patterns. Despite that, little has been done to explore how such interaction patterns change and how they are linked to the built environment from the perspective of transient demographic changes using urban big data. In this paper, the tap-in-tap-out smart card data of bus/metro and taxi GPS trajectory data before and after the Chinese Spring Festival in Shenzhen, China, are used to explore such interaction patterns. A time-series clustering method and an elasticity change index (ECI) are adopted to detect the changing transit mode patterns and the underlying dynamics. The findings indicate that the interactions between different transit modes vary over space and time and are competitive or complementary in different parts of the city. Both ordinary least-squares (OLS) and geographically weighted regression (GWR) models with built environment variables are used to reveal the impact of changes in different transit modes on ECIs and their linkage with the built environment. The results of this study will contribute to the planning and design of multi-modal transport services.
Most existing studies on public transit network (PTN) rely on either small-scale passenger flow data or small PTN, and only traditional network parameters are used to calculate the correlation coefficient. In this work, the real smart card data (SCD) (when passenger tap in and tap out a station) of over eight million users is used as a proxy of passenger flow to dynamically explore and evaluate the structure of large-scale PTNs with tens of thousands of stations in Beijing, China. Three types of large-scale PTNs are generated, and the overall network structure of PTNs are examined and found to follow heavy-tailed distributions (mostly power law). Further, three traditional centrality measures (i.e., degree, betweenness and closeness) are adopted and modified to dynamically explore the relationship between PTNs and passenger flow. Our findings show that, the modified centrality measures outperform the traditional centrality measures in estimating passenger flow.
Developing data‐driven approaches to understanding urban structures is important for urban planning. However, it is still challenging to combine different transport datasets into a unified framework and reveal the dynamics of urban structures with the emergence of shared mobility. In this study, we propose two empirical multilayer networks to infer and profile urban structures. First, a temporal network is constructed using traditional taxi data over years to reveal the urban structures. Second, a multimodal network is constructed using shared mobility and traditional taxi data over a year to reveal the urban structures. The proposed networks are tested in New York City using a large volume of shared bike, shared vehicle, and traditional taxi data. The multilayer network centralities and community detection enable us to profile the characteristics of the urban flows and urban structure. The analytical results allow us to acquire a better understanding of urban structures from a multilayer perspective, and also provide a geocomputation framework that is useful for urban and geographic researchers.
Urban agglomeration is an important strategy used to promote economic development and urbanization in China. Understanding the structure of urban agglomeration is therefore essential for policy‐makers and planners. In this study, the Beijing–Tianjin–Hebei urban agglomeration (BTHUG) is explored through a proposed spatial network analytical framework and a large mobile phone data set (over 20 million users). We first construct a weight‐directed spatial interaction network based on an origin–destination matrix derived from the data set. Several network metrics (i.e., degree, strength, the rich‐club coefficient, and the assortativity coefficient) and three selected community detection algorithms (i.e., Infomap, Louvain, and Regionalization) are applied and compared to reveal the structure of the BTHUG. A four‐level hierarchical structure is defined and observed: one global center, two local centers, major cities that have low mobility flow but strong linkages with the three centers, and peripheral cities that have low mobility flow and weak linkages with the three centers. In particular, the results imply that the spatial structure of the BTHUG is over‐dependent on the global center (i.e., Beijing and northern Langfang). Further, ignoring spatial interaction patterns in top‐down administrative planning for urban agglomeration may lead to ineffective integrated development. The implications for BTHUG planning are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.