Fundamental understanding of electrolytes is critical for designing lithium-ion batteries with excellent performance and high safety. The traditional solvent in electrolytes of lithium-ion batteries is mainly ethylene carbonate and propylene...
Lithium polysulfides (LiPSs)/sulfide are essential in secondary lithium batteries. In this work, we used density functional theory computational methods to obtain the law of constraining lithium polysulfides/sulfide by the affinitive interactions at the electronic level. The proton transfer, the orientation of polysulfides, the electron affinity, and the acid dissociation constant of small organic molecules were examined to elucidate the lithium polysulfides/sulfide binding mechanism with functional groups. The carboxyl groups exhibited a strong ability to dissolve the low-order polysulfides via proton transfer, although this type of group is highly unstable. In comparison, 1,2-diaminopropane with adjacent amino groups can strongly anchor the high-order polysulfides. The electrostatic attractions between lithium-ion and the electron-rich groups and their number and location dominated the binding energetics. Also, the entropy contribution to the binding should be considered. The information gained from these results can serve as a criterion for the selection of co-solvent for the electrolyte or postmodified functional groups for decorating the cathode in the lithium−sulfur system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.