To make organic solar cells (OSCs) more competitive in the diverse photovoltaic cell technologies, it is very important to demonstrate that OSCs can achieve very good efficiencies and that their cost can be reduced. Here, a pair of nonfullerene small-molecule acceptors, IT-2Cl and IT-4Cl, is designed and synthesized by introducing easy-synthesis chlorine substituents onto the indacenodithieno[3,2-b]thiophene units. The unique feature of the large dipole moment of the CCl bond enhances the intermolecular charge-transfer effect between the donor-acceptor structures, and thus expands the absorption and down shifts the molecular energy levels. Meanwhile, the introduction of CCl also causes more pronounced molecular stacking, which also helps to expand the absorption spectrum. Both of the designed OSCs devices based on two acceptors can deliver a power conversion efficiency (PCE) greater than 13% when blended with a polymer donor with a low-lying highest occupied molecular orbital level. In addition, since IT-2Cl and IT-4Cl have very good compatibility, a ternary OSC device integrating these two acceptors is also fabricated and obtains a PCE greater than 14%. Chlorination demonstrates effective ability in enhancing the device performance and facile synthesis route, which both deserve further exploitation in the modification of photovoltaic materials.
A new acceptor-donor-acceptor-structured nonfullerene acceptor ITCC (3,9-bis(4-(1,1-dicyanomethylene)-3-methylene-2-oxo-cyclopenta[b]thiophen)-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d':2,3-d']-s-indaceno[1,2-b:5,6-b']-dithiophene) is designed and synthesized via simple end-group modification. ITCC shows improved electron-transport properties and a high-lying lowest unoccupied molecular orbital level. A power conversion efficiency of 11.4% with an impressive V of over 1 V is recorded in photovoltaic devices, suggesting that ITCC has great potential for applications in tandem organic solar cells.
As a direct-band-gap transition metal dichalcogenide (TMD), atomic thin MoS has attracted extensive attention in photodetection, whereas the hitherto unsolved persistent photoconductance (PPC) from the ungoverned charge trapping in devices has severely hindered their employment. Herein, we demonstrate the realization of ultrafast photoresponse dynamics in monolayer MoS by exploiting a charge transfer interface based on surface-assembled zinc phthalocyanine (ZnPc) molecules. The formed MoS/ZnPc van der Waals interface is found to favorably suppress the PPC phenomenon in MoS by instantly separating photogenerated holes toward the ZnPc molecules, away from the traps in MoS and the dielectric interface. The derived MoS detector then exhibits significantly improved photoresponse speed by more than 3 orders (from over 20 s to less than 8 ms for the decay) and a high responsivity of 430 A/W after AlO passivation. It is also demonstrated that the device could be further tailored to be 2-10-fold more sensitive without severely sacrificing the ultrafast response dynamics using gate modulation. The strategy presented here based on surface-assembled organic molecules may thus pave the way for realizing high-performance TMD-based photodetection with ultrafast speed and high sensitivity.
Concentrated electrolytes usually demonstrate good electrochemical performance and thermal stability, and are also supposed to be promising when it comes to improving the safety of lithium-ion batteries due to their low flammability. Here, we show that LiN(SO2F)2-based concentrated electrolytes are incapable of solving the safety issues of lithium-ion batteries. To illustrate, a mechanism based on battery material and characterizations reveals that the tremendous heat in lithium-ion batteries is released due to the reaction between the lithiated graphite and LiN(SO2F)2 triggered thermal runaway of batteries, even if the concentrated electrolyte is non-flammable or low-flammable. Generally, the flammability of an electrolyte represents its behaviors when oxidized by oxygen, while it is the electrolyte reduction that triggers the chain of exothermic reactions in a battery. Thus, this study lights the way to a deeper understanding of the thermal runaway mechanism in batteries as well as the design philosophy of electrolytes for safer lithium-ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.