It is important to monitor and assess the physiological strain of individuals working in hot environments to avoid heat illness and performance degradation. The body core temperature (Tc) is a reliable indicator of thermal work strain. However, measuring Tc is invasive and often inconvenient and impractical for real-time monitoring of workers in high heat strain environments. Seeking a better solution, the main aim of the present study was to investigate the Kalman filter method to enable the estimation of heat strain from non-invasive measurements (heart rate (HR) and chest skin temperature (ST)) obtained 'online' via wearable body sensors. In particular, we developed two Kalman filter models. First, an extended Kalman filter (EFK) was implemented in a cubic state space modelling framework (HR versus Tc) with a stage-wise, autoregressive exogenous model (incorporating HR and ST) as the time update model. Under the second model, the online Kalman filter (OFK) approach builds up thetimeupdateequationdependingonlyontheinitialvalueofTcandthelatestvalueofthe exogenous variables. Both models were trained and validated using data from laboratoryand outfield-based heat strain profiling studies in which subjects performed a high intensity military foot march. While both the EKF and OKF models provided satisfactory estimates of Tc, the results showed an overall superior performance of the OKF model (overall root mean square error, RMSE = 0.31 C) compared to the EKF model (RMSE = 0.45 C).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.