Fig. 1: RingGesture, a ring-based mid-air gesture typing system, enables users to input text both quickly and accurately. The process unfolds as follows: a) The process begins when the user articulates their wrist, positioning the cursor over the initial letter of the desired word. b) Then, the user performs a pinch gesture with their thumb and index finger, marking the start of the cursor's trajectory. c) Subsequently, the user gestures the word's trajectory in mid-air to complete the input by articulating their wrist. d) Upon releasing the pinch, the deep-learning word prediction framework, Score Fusion, predicts Top-K words, with the Top-1 word being pre-selected.
Explainable AI (XAI) has established itself as an important component of AI-driven interactive systems. With Augmented Reality (AR) becoming more integrated in daily lives, the role of XAI also becomes essential in AR because end-users will frequently interact with intelligent services. However, it is unclear how to design effective XAI experiences for AR. We propose XAIR, a design framework that addresses when, what, and how to provide explanations of AI output in AR. The framework was based on a multi-disciplinary literature review of XAI and HCI research, a large-scale survey probing 500+ end-users' preferences for AR-based explanations, and three workshops with 12 experts collecting their insights about XAI design in AR. XAIR's utility and effectiveness was verified via a study with 10 designers and another study with 12 end-users. XAIR can provide guidelines for designers, inspiring them to identify new design opportunities and achieve effective XAI designs in AR.
In this paper we examine the task of key gesture spotting: accurate and timely online recognition of hand gestures. We specifically seek to address two key challenges faced by developers when integrating key gesture spotting functionality into their applications. These are: i) achieving high accuracy and zero or negative activation lag with single-time activation; and ii) avoiding the requirement for deep domain expertise in machine learning. We address the first challenge by proposing a key gesture spotting architecture consisting of a novel gesture classifier model and a novel single-time activation algorithm. This key gesture spotting architecture was evaluated on four separate hand skeleton gesture datasets, and achieved high recognition accuracy with early detection. We address the second challenge by encapsulating different data processing and augmentation strategies, as well as the proposed key gesture spotting architecture, into a graphical user interface and an application programming interface. Two user studies demonstrate that developers are able to efficiently construct custom recognizers using both the graphical user interface and the application programming interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.