Endometriosis is a condition that is influenced by hormones and involves stroma and glands being found outside the uterus; there are increases in proliferation, invasion, internal bleeding, and fibrosis. Matrix metalloproteinases (MMPs) have been suggested to be crucial in the progression of invasion. The MMP family includes calcium-dependent zinc-containing endopeptidases, some of which not only affect the process of cell invasion but also participate in other physiological and pathological processes, such as angiogenesis and fibrosis. MMPs act as downstream-targeted molecules and their expression can be regulated by numerous factors such as estrogen, oxidative stress, cytokines, and environmental contaminants. Given their unique roles in endometriosis, MMPs may become effective biomarkers of endometriosis in the future. In the present review, we summarize the current literature on MMPs regarding their classification, function, and potential value for endometriosis, which may contribute to our knowledge of MMPs and MMP-targeted interventions.
Problem: Endometriosis (EMs) is characterized by the presence of endometrial stroma and glands outside the uterus. Our previous study showed that baicalein inhibited proliferation and induced apoptosis in EMs. However, the effects of baicalein on the invasiveness of ectopic endometrial stromal cells (EcESCs) remain unclear. The aim of this study was to assess the potential anti-invasive effect of baicalein and determine the underlying mechanism. Methods: The invasive and migratory properties of EcESCs were assessed in vitro using Transwell and wound healing assays. The expression of functional markers of EcESCs, including matrix metalloproteases (MMPs), FURIN, and TGFB1, was analyzed using WB and ELISA. Additionally, a mouse model of EMs was treated with baicalein (10 mg/kg/d and 35 mg/kg/d) for 4 weeks. The weight and number of ectopic lesions were determined, and the expression of markers was assessed using immunohistochemistry. Results: Baicalein inhibited the invasion of EcESCs and the expression of certain invasion-related proteins, including MMP9, MMP2, and MT1-MMP. Exposure to baicalein reduced the extracellular levels of TGFB1 in EcESCs and the reduced expression of TGFB1, resulting in decreased expression of FURIN in EcESCs, which serves a pivotal role in the transformation of pro-MT1-MMP to activated MT1-MMP. In the mouse model of EMs, intraperitoneal injection of baicalein inhibited the growth of ectopic lesions and reduced MT1-MMP, FURIN, and TGFB1 expression. Conclusions: Baicalein reduced the invasion of EMs, potentially by restricting the FURIN-MT1-MMP-mediated cell invasion of EcESCs maybe through reduction of the autocrine of TGFB1.
Iron overload and oxidative stress have been reported to contribute to ferroptosis in endometriotic lesions. However, the possible roles of iron overload on macrophages in endometriosis (EMs) remain unknown. Based on recent reports by single-cell sequencing data of endometriosis, here we found significant upregulations of ferroptosis-associated genes in the macrophage of the endometriotic lesion. Additionally, there was an elevated expression of HMOX1, FTH1, and FTL in macrophages of peritoneal fluid in EMs, as well as iron accumulation in the endometriotic lesions. Notably, cyst fluid significantly up-regulated levels of intracellular iron and ferroptosis in Phorbol-12-myristate-13-acetate (PMA)-stimulated THP-1 cells. Additionally, high iron-induced ferroptosis obviously reduced PMA-stimulated THP-1 cells’ phagocytosis and increased the expression of angiogenic cytokines, such as vascular endothelial growth factor A (VEGFA) and interleukin 8 (IL8). Baicalein, a potential anti-ferroptosis compound, increased GPX4 expression, significantly inhibited ferroptosis, and restored phagocytosis of THP-1 cells in vitro. Collectively, our study reveals that ferroptosis triggered by high iron in cyst fluid promotes the development of EMs by impairing macrophage phagocytosis and producing more angiogenic cytokines (e.g., IL8 and VEGFA). Baicalein displays the potential for the treatment of EMs, especially in patients with high ferroptosis and low phagocytosis of macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.