P-type and n-type top-gate carbon nanotube thin-film transistors (TFTs) can be selectively and simultaneously fabricated on the same polyethylene terephthalate (PET) substrate by tuning the types of polymer-sorted semiconducting single-walled carbon nanotube (sc-SWCNT) inks, along with low temperature growth of HfO thin films as shared dielectric layers. Both the p-type and n-type TFTs show good electrical properties with on/off ratio of ≈10 , mobility of ≈15 cm V s , and small hysteresis. Complementary metal oxide semiconductor (CMOS)-like logic gates and circuits based on as-prepared p-type and n-type TFTs have been achieved. Flexible CMOS-like inverters exhibit large noise margin of 84% at low voltage (1/2 V = 1.5 V) and maximum voltage gain of 30 at V of 1.5 V and low power consumption of 0.1 μW. Both of the noise margin and voltage gain are one of the best values reported for flexible CMOS-like inverters at V less than 2 V. The printed CMOS-like inverters work well at 10 kHz with 2% voltage loss and delay time of ≈15 μs. A 3-stage ring oscillator has also been demonstrated on PET substrates and the oscillation frequency of 3.3 kHz at V of 1 V is achieved.
External load dependent degradation behavior of P3HT:PC61BM solar cells is demonstrated, which can be successfully suppressed by blending with an exciton quencher of PC61BM.
The fabrication of printed high-performance and environmentally stable n-type single-walled carbon nanotube (SWCNT) transistors and their integration into complementary (i.e., complementary metal-oxide-semiconductor, CMOS) circuits are widely recognized as key to achieving the full potential of carbon nanotube electronics. Here, we report a simple, efficient, and robust method to convert the polarity of SWCNT thin-film transistors (TFTs) using cheap and readily available ethanolamine as an electron doping agent. Printed p-type bottom-gate SWCNT TFTs can be selectively converted into n-type by deposition of ethanolamine inks on the transistor active region via aerosol jet printing. Resulted n-type TFTs show excellent electrical properties with an on/off ratio of 10, effective mobility up to 30 cm V s, small hysteresis, and small subthreshold swing (90-140 mV dec), which are superior compared to the original p-type SWCNT devices. The n-type SWCNT TFTs also show good stability in air, and any deterioration of performance due to shelf storage can be fully recovered by a short low-temperature annealing. The easy polarity conversion process allows construction of CMOS circuitry. As an example, CMOS inverters were fabricated using printed p-type and n-type TFTs and exhibited a large noise margin (50 and 103% of 1/2 V = 1 V) and a voltage gain as high as 30 (at V = 1 V). Additionally, the CMOS inverters show full rail-to-rail output voltage swing and low power dissipation (0.1 μW at V = 1 V). The new method paves the way to construct fully functional complex CMOS circuitry by printed TFTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.