Corneal ulcer is a common ophthalmic symptom. Segmentation algorithms are needed to identify and quantify corneal ulcers from ocular staining images. Developments of such algorithms have been obstructed by a lack of high quality datasets (the ocular staining images and the corresponding goldstandard ulcer segmentation labels), especially for supervised learning based segmentation algorithms. In such context, we prepare a dataset containing 712 ocular staining images and the associated segmentation labels of flaky corneal ulcers. In addition to segmentation labels for flaky corneal ulcers, we also provide each image with three-fold class labels: firstly, each image has a label in terms of its general ulcer pattern; secondly, each image has a label in terms of its specific ulcer pattern; thirdly, each image has a label indicating its ulcer severity degree. This dataset not only provides an excellent opportunity for investigating the accuracy and reliability of different segmentation and classification algorithms for corneal ulcers, but also advances the development of new supervised learning based algorithms especially those in the deep learning framework.
Although deep learning based diabetic retinopathy (DR) classification methods typically benefit from welldesigned architectures of convolutional neural networks, the training setting also has a non-negligible impact on the prediction performance. The training setting includes various interdependent components, such as objective function, data sampling strategy and data augmentation approach. To identify the key components in a standard deep learning framework (ResNet-50) for DR grading, we systematically analyze the impact of several major components. Extensive experiments are conducted on a publicly-available dataset EyePACS. We demonstrate that (1) the ResNet-50 framework for DR grading is sensitive to input resolution, objective function, and composition of data augmentation, (2) using mean square error as the loss function can effectively improve the performance with respect to a task-specific evaluation metric, namely the quadratically-weighted Kappa, (3) utilizing eye pairs boosts the performance of DR grading and (4) using data resampling to address the problem of imbalanced data distribution in EyePACS hurts the performance. Based on these observations and an optimal combination of the investigated components, our framework, without any specialized network design, achieves the state-of-the-art result (0.8631 for Kappa) on the EyePACS test set (a total of 42670 fundus images) with only image-level labels. Our codes and pre-trained model are available at https://github.com/YijinHuang/pytorch-classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.