Non-alcoholic fatty liver disease (NAFLD) is a series of diseases, involving excessive lipid deposition in the liver and is often accompanied by obesity, diabetes, dyslipidemia, abnormal blood pressure, and other metabolic disorders. In order to more accurately reflect its pathogenesis, an international consensus renamed NAFLD in 2020 as metabolic (dysfunction) associated with fatty liver disease (MAFLD). The changes in diet and lifestyle are recognized the non-drug treatment strategies; however, due to the complex pathogenesis of NAFLD, the current drug therapies are mainly focused on its pathogenic factors, key links of pathogenesis, and related metabolic disorders as targets. There is still a lack of specific drugs. In clinical studies, the common NAFLD treatments include the regulation of glucose and lipid metabolism to protect the liver and anti-inflammation. The NAFLD treatments based on the enterohepatic axis, targeting gut microbiota, are gradually emerging, and various new metabolism-regulating drugs are also under clinical development. Therefore, this review article has comprehensively discussed the research advancements in NAFLD treatment in recent years.
As the most prominent clinical drug targets for the inhibition of platelet aggregation, P2Y and P2Y have been found to be highly expressed in both platelets and macrophages. However, the roles and function of P2Y in the regulation of macrophage-mediated innate immune responses remain unclear. Here, we demonstrate that adenosine 5'-diphosphate (ADP), the endogenous ligand of P2Y, P2Y and P2Y, was released both in E. coli-infected mice and from macrophages treated with either lipopolysaccharide (LPS) or Pam3CSK4. Furthermore, the expression of P2Y was clearly increased in both LPS-treated macrophages and tuberculosis patients. ADP protected mice from E. coli 0111-induced peritonitis by recruiting more macrophages to the infected sites. Consistent with this, ADP and ADP-treated cell culture medium attracted more macrophages in the transwell assay by enhancing the expression of MCP-1. Nevertheless, P2Y is dispensable for ADP-mediated protection against bacterial infection. However, either P2Y/P2Y deficiency or blocking the downstream signaling of P2Y/P2Y blocked the ADP-mediated immune response and allowed more bacteria to persist in the infected mice. Furthermore, extracellular signal-regulated kinase (ERK) phosphorylation was clearly increased by ADP, and this type of activation could be blocked by either forskolin or analogs of cyclic AMP (cAMP) (for example, 8-bromo-cAMP). Accordingly, ADP-induced MCP-1 production and protection against bacterial infection could also be reduced by U0126, forskolin and 8-bromo-cAMP. Overall, our study reveals a relationship between danger signals and innate immune responses, which suggests the potential therapeutic significance of ADP-mediated purinergic signaling in infectious diseases.
IntroductionParoxysmal Nocturnal Hemoglobinuria (PNH) is an acquired clonal disease of hematopoietic stem cells. It is caused by somatic mutation of the X‐linked PIGA gene, resulting in a deficient expression of glycosylphosphatidylinositol‐anchored proteins (GPI‐APs). In this study, we aimed to explore the diagnostic value of next‐generation sequencing (NGS) and potential molecular basis in PNH patients.MethodsGenomic DNA of 85 PNH patients was analyzed by a 114‐gene NGS panel.ResultsMutational analysis of PIGA identified 124 mutations in 92% PNH patients, including 101 distinct mutations and 23 recurrent mutations. Among them, 102 mutations were newly reported. Most mutations were located in exon 2 of PIGA gene, and truncated mutation was the most common one. Other mutations were detected in 26 out of 85 cases, including five cases of DNMT3A variants, four cases of ASXL1 variants, and four cases of U2AF1 variants. Clonal analysis was performed in one case and outlined a linear evolution pattern in classic PNH. There was a positive correlation between number of PIGA mutations and fraction of GPI‐APs deficient granulocytes.ConclusionThe detection of PIGA mutations and additional variants by targeted NGS not only shed light on the genetic characteristics of PNH, but also provided an important reference value in the diagnosis of PNH at molecular level.
The construction of functionalized covalent organic frameworks (COFs) is of great significance for broadening their potential applications, but are yet challenging to achieve, especially to three-dimensional (3D) COFs, because the...
Background Chronic myelomonocytic leukemia (CMML) is a rare and heterogeneous hematological malignancy. It has been shown that the molecular abnormalities such as ASXL1, TET2, SETBP1, and SRSF2 mutations are common in Caucasian population. Methods We retrospectively analyzed 178 Chinese CMML patients. The targeted next generation sequencing (NGS) was used to evaluate 114 gene variations, and the prognostic factors for OS were determined by COX regression analysis. Results The CMML patients showed a unique mutational spectrum, including TET2 (36.5%), NRAS (31.5%), ASXL1 (28.7%), SRSF2 (24.7%), and RUNX1 (21.9%). Of the 102 patients with clonal analysis, the ancestral events preferentially occurred in TET2 (18.5%), splicing factors (16.5%), RAS (14.0%), and ASXL1 (7.8%), and the subclonal genes were mainly ASXL1, TET2, and RAS. In addition, the secondary acute myeloid leukemia (sAML) transformed from CMML often had mutations in DNMT3A, ETV6, FLT3, and NPM1, while the primary AML (pAML) demonstrated more mutations in CEBPA, DNMT3A, FLT3, IDH1/2, NPM1, and WT1. It was of note that a series of clones were emerged during the progression from CMML to AML, including DNMT3A, FLT3, and NPM1. By univariate analysis, ASXL1 mutation, intermediate- and high-risk cytogenetic abnormality, CMML-specific prognostic scoring system (CPSS) stratifications (intermediate-2 and high group), and treatment options (best supportive care) predicted for worse OS. Multivariate analysis revealed a similar outcome. Conclusions The common mutations in Chinese CMML patients included epigenetic modifiers (TET2 and ASXL1), signaling transduction pathway components (NRAS), and splicing factor (SRSF2). The CMML patients with DNMT3A, ETV6, FLT3, and NPM1 mutations tended to progress to sAML. ASXL1 mutation and therapeutic modalities were independent prognostic factors for CMML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.