Improving electrochemical activity of graphene is crucial for its various applications, which requires delicate control over its geometric and electronic structures. We demonstrate that precise control of the density of vacancy defects, introduced by Ar(+) irradiation, can improve and finely tune the heterogeneous electron transfer (HET) rate of graphene. For reliable comparisons, we made patterns with different defect densities on a same single layer graphene sheet, which allows us to correlate defect density (via Raman spectroscopy) with HET rate (via scanning electrochemical microscopy) of graphene quantitatively, under exactly the same experimental conditions. By balancing the defect induced increase of density of states (DOS) and decrease of conductivity, the optimal HET rate is attained at a moderate defect density, which is in a critical state; that is, the whole graphene sheet becomes electronically activated and, meanwhile, maintains structural integrity. The improved electrochemical activity can be understood by a high DOS near the Fermi level of defective graphene, as revealed by ab initio simulation, which enlarges the overlap between the electronic states of graphene and the redox couple. The results are valuable to promote the performance of graphene-based electrochemical devices. Furthermore, our findings may serve as a guide to tailor the structure and properties of graphene and other ultrathin two-dimensional materials through defect density engineering.
Controlling the electrical conductance and in particular the occurrence of quantum interference in single-molecule junctions through gating effects, has potential for the realization of highperformance functional molecular devices. In this work, we used an electrochemically-gated, mechanically-controllable break junction technique to tune the electronic behaviour of thiophene-based molecular junctions that show destructive quantum interference (DQI) features. By varying the voltage applied to the electrochemical gate at room temperature, we
Oriented external electric fields (OEEFs) offer a unique chance to tune catalytic selectivity by orienting the alignment of the electric field along the axis of the activated bond for a specific chemical reaction; however, they remain a key experimental challenge. Here, we experimentally and theoretically investigated the OEEF-induced selective catalysis in a two-step cascade reaction of the Diels-Alder addition followed by an aromatization process. Characterized by the mechanically controllable break junction (MCBJ) technique in the nanogap and confirmed by nuclear magnetic resonance (NMR) in bottles, OEEFs are found to selectively catalyze the aromatization reaction by one order of magnitude owing to the alignment of the electric field on the reaction axis. Meanwhile, the Diels-Alder reaction remained unchanged since its reaction axis is orthogonal to the electric fields. This orientation-selective catalytic effect of OEEFs reveals that chemical reactions can be selectively manipulated through the elegant alignment between the electric fields and the reaction axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.