A cationic conjugated polyelectrolyte PPET3-N2 was used as a photosensitizer for photocatalytic oxidation of organic sulfides, including thioanisole, ethyl phenyl sulfide, 4-methylphenyl methyl sulfide, etc., to form sulfoxides with good yields and high selectivity. Oxidation reactions were performed in both batch and microfluidic reactors, where the microfluidic reactor can significantly promote the conversion of photocatalytic oxidation reaction to over 98% in about 8 min. Further studies of the photocatalytic oxidation of the antitumor drug ricobendazole in the microfluidic reactor demonstrate the potential application of the polymer material in organic reactions given its high selectivity, good efficiency, and operation convenience.
Both kanamycin A and kanamycin B, antibiotic components produced by Streptomyces kanamyceticus, have medical value. Two different pathways for kanamycin biosynthesis have been reported by two research groups. In this study, to obtain an optimal kanamycin A-producing strain and a kanamycin B-high-yield strain, we first examined the native kanamycin biosynthetic pathway in vivo. Based on the proposed parallel biosynthetic pathway, kanN disruption should lead to kanamycin A accumulation; however, the kanN-disruption strain produced neither kanamycin A nor kanamycin B. We then tested the function of kanJ and kanK. The main metabolite of the kanJ-disruption strain was identified as kanamycin B. These results clarified that kanamycin biosynthesis does not proceed through the parallel pathway and that synthesis of kanamycin A from kanamycin B is catalyzed by KanJ and KanK in S. kanamyceticus. As expected, the kanamycin B yield of the kanJ-disruption strain was 3268±255 μg/mL, 12-fold higher than that of the original strain. To improve the purity of kanamycin A and reduce the yield of kanamycin B in the fermentation broth, four different kanJ- and kanK-overexpressing strains were constructed through either homologous recombination or site-specific integration. The overexpressing strain containing three copies of kanJ and kanK in its genome exhibited the lowest kanamycin B yield (128±20 μg/mL), which was 54% lower than that of the original strain. Our experimental results demonstrate that kanamycin A is derived from KanJ-and-KanK-catalyzed conversion of kanamycin B in S. kanamyceticus. Moreover, based on the clarified biosynthetic pathway, we obtained a kanamycin B-high-yield strain and an optimized kanamycin A-producing strain with minimal byproduct.
In this review, the research progress on catalytic conversion of glycerol to lactic acid or lactate esters and the reaction mechanisms with different catalysis systems are summarized. Both homogeneous catalysts, including inorganic bases and metal complexes, and heterogeneous catalysts, including metal oxides, molecular sieves, polyoxometalates and noble and non‐noble metals, are discussed. In particular, the influence of catalyst components, the physical and chemical properties of the catalysts and additives and solvents on the catalytic performances are highlighted. In comparison, nano‐metal particles or bimetal catalysts could achieve good catalytic performance, in which the alloy and synergistic effects might form under certain conditions. For further improvement of the sustainable transformation of glycerol to lactic acid or lactate esters, attention should still be paid to rational design of novel cost‐effective, high‐efficiency and green catalytic systems. © 2022 Society of Chemical Industry and John Wiley & Sons, Ltd.
A structurally unique aminoglycoside produced in Streptoalloteichus tenebrarius, Apramycin is used in veterinary medicine or the treatment of Salmonella, Escherichia coli and Pasteurella multocida infections. Although apramycin was discovered nearly 50 years ago, many biosynthetic steps of apramycin remain unknown. In this study, we identified a HemK family methyltransferase, AprI, to be the 7’-N-methyltransferase in apramycin biosynthetic pathway. Biochemical experiments showed that AprI converted demethyl-aprosamine to aprosamine. Through gene disruption of aprI, we identified a new aminoglycoside antibiotic demethyl-apramycin as the main product in aprI disruption strain. The demethyl-apramycin is an impurity in apramycin product. In addition to demethyl-apramycin, carbamyltobramycin is another major impurity. However, unlike demethyl-apramycin, tobramycin is biosynthesized by an independent biosynthetic pathway in S. tenebrarius. The titer and rate of apramycin were improved by overexpression of the aprI and disruption of the tobM2, which is a crucial gene for tobramycin biosynthesis. The titer of apramycin increased from 2227±320 mg/L to 2331±210 mg/L, while the titer of product impurity demethyl-apramycin decreased from 196±36 mg/L to 51±9 mg/L. Moreover, the carbamyltobramycin titer of the wild-type strain was 607±111 mg/L and that of the engineering strain was null. The rate of apramycin increased from 68% to 87%, and that of demethyl-apramycin decreased from 1.17% to 0.34%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.