Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) are the most common infectious bacteria in our daily life, and seriously affect human's health. Because of the frequent and extensive use of antibiotics, the microbial strains forming drug resistance have become more and more difficult to deal with. Herein, we utilized bovine serum albumin (BSA) as the template to synthesize uniform copper sulfide (CuS) nanoparticles via a biomineralization method. The as-prepared BSA-CuS nanocomposites showed good biocompatibility and strong near-infrared absorbance performance and can be used as an efficient photothermal conversion agent for pathogenic bacteria ablation with a 980 nm laser at a low power density of 1.59 W/cm. The cytotoxicity of BSA-CuS nanocomposite was investigated using skin fibroblast cells and displayed good biocompatibility. Furthermore, the antibacterial tests indicated that BSA-CuS nanocomposite showed no antibacterial activity without NIR irradiation. In contrast, they demonstrated satisfying killing bacterial ability in the presence of NIR irradiation. Interestingly, S. aureus and E. coli showed various antibacterial mechanisms, possibly because of the different architectures of bacterial walls. Considering the low cost, easy preparation, excellent biocompatibility and strong photothermal convention efficiency (24.68%), the BSA-CuS nanocomposites combined with NIR irradiation will shed bright light on the treatment of antibiotic-resistant pathogenic bacteria.
A convenient and feasible photoelectrochemical (PEC) sensing platform based on gold nanoparticles-decorated g-C3N4 nanosheets (AuNP/g-C3N4) was designed for highly sensitive monitoring of T4 polynucleotide kinase (PNK) activity, using DNAzyme-mediated catalytic precipitation amplification. To realize our design, the AuNP/g-C3N4 nanohybrid was initially synthesized through in situ reduction of Au(III) on the g-C3N4 nanosheets, which was utilized for the immobilization of hairpin DNA1 (HP1) on the sensing interface. Thereafter, a target-induced isothermal amplification was automatically carried out on hairpin DNA2 (HP2) in the solution phase through PNK-catalyzed 5'-phosphorylation accompanying formation of numerous trigger DNA fragments, which could induce generation of hemin/G-quadruplex-based DNAzyme on hairpin DNA1. Subsequently, the DNAzyme could catalyze the 4-chloro-1-naphthol (4-CN) oxidation to produce an insoluble precipitation on the AuNP/g-C3N4 surface, thereby resulting in the local alternation of the photocurrent. Experimental results revealed that introduction of AuNP on the g-C3N4 could cause a ∼100% increase in the photocurrent because of surface plasmon resonance-enhanced light harvesting and separation of photogenerated e-/h+ pairs. Under the optimal conditions, the percentage of photocurrent decrement (ΔI/I0, relative to background signal) increased with the increasing PNK activity in a dynamic working range from 2 to 100 mU mL(-1) with a low detection limit (LOD) of 1.0 mU mL(-1). The inhibition effect of adenosine diphosphate also received a good performance in PNK inhibitor screening research, thereby providing a useful scheme for practical use in quantitative PNK activity assay for life science and biological research.
A new colorimetric immunosensing platform accompanying enzyme cascade amplification strategy was fabricated for quantitative screening of small-molecular mycotoxins (aflatoxin B, AFB used in this case) coupling with enzyme-controlled dissolution of MnO nanoflakes. The visual colored assay was executed by high-efficient MnO-3,3',5,5'-tetramethylbenzidine (TMB) system (blue). In the presence of ascorbic acid, MnO nanoflakes were dissolved into Mn ions, thus resulting in a perceptible color change from blue to colorless. The reaction could be weakened through ascorbate oxidase to catalyze ascorbic acid into dehydroascorbic acid, which indirectly depended on the concentration of ascorbate oxidase. By using ascorbate oxidase/ anti-AFB antibody-labeled gold nanoparticles, a novel competitive-type colorimetric enzyme immunoassay was developed for detection of AFB on AFB-bovine serum albumin (BSA)-conjugated magnetic beads. Upon addition of target AFB, the analyte competed with the conjugated AFB-BSA on the magnetic beads for the labeled anti-AFB antibody on the gold nanoparticles. Under optimal conditions, the absorbance decreased with increasing target AFB within the dynamic range of 0.05-150ngmL with a detection limit of 6.5pgmL at the 3S level. The precision and specificity of the MnO-TMB-based immunosensing system were acceptable. In addition, method accuracy was further validated for monitoring spiked peanut samples, giving results matched well with those obtained from commercialized AFB ELISA kit.
A novel DNA nanomachine based on the linear rolling circle amplification strategy was designed for sensitive screening of microRNA (miRNA) at an ultralow concentration coupling catalytic hairpin assembly (CHA) with DNAzyme formation.
Photoelectrochemical (PEC) detection is an emerging and promising analytical tool. However, its actual application still faces some challenges like potential damage of biomolecules (caused by itself system) and intrinsic low-throughput detection. To solve the problems, herein we design a novel split-type photoelectrochemical immunoassay (STPIA) for ultrasensitive detection of prostate specific antigen (PSA). Initially, the immunoreaction was performed on a microplate using a secondary antibody/primer-circular DNA-labeled gold nanoparticle as the detection tag. Then, numerously repeated oligonucleotide sequences with many biotin moieties were in situ synthesized on the nanogold tag via RCA reaction. The formed biotin concatamers acted as a powerful scaffold to bind with avidin-alkaline phosphatase (ALP) conjugates and construct a nanoenzyme reactor. By this means, enzymatic hydrolysate (ascorbic acid) was generated to capture the photogenerated holes in the CdS quantum dot-sensitized TiO2 nanotube arrays, resulting in amplification of the photocurrent signal. To elaborate, the microplate-based immunoassay and the high-throughput detection system, a semiautomatic detection cell (installed with a three-electrode system), was employed. Under optimal conditions, the photocurrent increased with the increasing PSA concentration in a dynamic working range from 0.001 to 3 ng mL(-1), with a low detection limit (LOD) of 0.32 pg mL(-1). Meanwhile, the developed split-type photoelectrochemical immunoassay exhibited high specificity and acceptable accuracy for analysis of human serum specimens in comparison with referenced electrochemiluminescence immunoassay method. Importantly, the system was not only suitable for the sandwich-type immunoassay mode, but also utilized for the detection of small molecules (e.g., aflatoxin B1) with a competitive-type assay format.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.