microRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by base pairing with their target messenger RNAs. Dysregulation of miRNAs is involved in the pathological initiation and progression of many human diseases. miR-221 and miR-222 (miR-221/222) are two highly homologous miRNAs, and they are significantly overexpressed in several types of human diseases. Silencing miR-221/222 could represent a promising approach for therapeutic studies. In the present review, we will describe the potential value of miR-221/222 as diagnostic, prognostic, and therapeutic biomarkers in various diseases including cancer and inflammatory diseases.
Electrospinning and electric stimulation (ES) are both promising methods to support neuron adhesion and guide extension of neurons for nerve regeneration. Concurrently, all studies focus on either electrospinning for conduits material or ES in vitro study to accelerate nerve regeneration; few work on the combined use of these two strategies or ES in vivo study. Therefore, this study aimed to investigate the abilities of direct current ES through electrospinning conductive polymer composites composed of polypyrrole and Poly (l-lactic acid-co-ε-caprolactone) (PPY/PLCL) in peripheral nerve regeneration. PPY/PLCL composite conduits were synthesized by polymerizing pyrrole coated electrospun PLCL scaffolds. Morphologies and chemical compositions were characterized by scanning electron microscope and attenuated total reflection fourier transform infrared (ATR-FTIR) microscope. Rat pheochromocytoma 12 (PC12) cells and dorsal root ganglia (DRG) cells cultured on PPY/PLCL scaffolds were stimulated with 100 mV/cm for 4 h per day. The median neurite length and cell viability were measured in PC-12 cells. The levels of brain-derived neurotrophic factor (BDNF), glial cell derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3) were analyzed in DRG cells. In rats, 15 mm gaps of sciatic nerves were bridged using an autograft, non-stimulated PPY/PLCL conduit and PPY/PLCL conduit stimulated with 100 mV potential, respectively. A 100 mV potential direct current ES was applied for 1 h per day at 1, 3, 5 and 7 days post-implantation. The PPY/PLCL conduits with ES showed a similar performance compared with the autograft group, and significantly better than the non-stimulated PPY/PLCL conduit group. These promising results show that the PPY/PLCL conductive conduits’ combined use with ES has great potential for peripheral nerve regeneration.
hampered by poor bioavailability and biostability, [3] undesirable off-target effects, [4] and obstacles presented by biological barriers, [5] thus motivating the development of drug delivery systems for efficient and localized delivery to affected tissue. Nanoparticle-based drug delivery systems for the treatment of inflammation are a powerful tool to target anti-inflammatory drugs to inflamed tissues. However, efficient local delivery remains challenging. Main hurdles include sequestration of nanoparticles by phagocytic cells and biological barriers such as the endothelium hindering infiltration and accumulation in the inflamed tissue. [6,7] Employing immune cells for active transport of drugs and drug-loaded nanocarriers to a target site is a promising recent approach. [8-10] Neutrophils are one of the most abundant, and also one of the first leukocytes to reach inflammatory tissue. [11,12] Upon activation, neutrophils can form neutrophil extracellular traps (NETs) within a few hours, a defined release mechanism that enables neutrophils to serve as a delivery system for drugs or loaded nanocarriers at early stages of inflammation. [13] These properties of neutrophils have recently been leveraged to deliver paclitaxel-loaded liposomes to suppress postoperative glioma recurrence. [8] Another study designed nanocarriers to attach to neutrophils and monocytes in circulation that subsequently Uncontrolled inflammation is a major pathological factor underlying a range of diseases including autoimmune conditions, cardiovascular disease, and cancer. Improving localized delivery of immunosuppressive drugs to inflamed tissue in a non-invasive manner offers significant promise to reduce severe side effects caused by systemic administration. Here, a neutrophil-mediated delivery system able to transport drug-loaded nanocarriers to inflamed tissue by exploiting the inherent ability of neutrophils to migrate to inflammatory tissue is reported. This hybrid system (neutrophils loaded with liposomes ex vivo) efficiently migrates in vitro following an inflammatory chemokine gradient. Furthermore, the triggered release of loaded liposomes and reuptake by target macrophages is studied. The migratory behavior of liposome-loaded neutrophils is confirmed in vivo by demonstrating the delivery of drugloaded liposomes to an inflamed skeletal muscle in mice. A single low-dose injection of the hybrid system locally reduces inflammatory cytokine levels. Biodistribution of liposome-loaded neutrophils in a human-disease-relevant myocardial ischemia reperfusion injury mouse model after i.v. injection confirms the ability of injected neutrophils to carry loaded liposomes to inflammation sites. This strategy shows the potential of nanocarrier-loaded neutrophils as a universal platform to deliver anti-inflammatory drugs to promote tissue regeneration in inflammatory diseases.
Infectious diseases continue to pose a substantial burden on global populations, requiring innovative broad-spectrum prophylactic and treatment alternatives. Here, we have designed modular synthetic polymer nanoparticles that mimic functional components of host cell membranes, yielding multivalent nanomimics that act by directly binding to varied pathogens. Nanomimic blood circulation time was prolonged by reformulating polymer–lipid hybrids. Femtomolar concentrations of the polymer nanomimics were sufficient to inhibit herpes simplex virus type 2 (HSV-2) entry into epithelial cells, while higher doses were needed against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given their observed virustatic mode of action, the nanomimics were also tested with malaria parasite blood-stage merozoites, which lose their invasive capacity after a few minutes. Efficient inhibition of merozoite invasion of red blood cells was demonstrated both in vitro and in vivo using a preclinical rodent malaria model. We envision these nanomimics forming an adaptable platform for developing pathogen entry inhibitors and as immunomodulators, wherein nanomimic-inhibited pathogens can be secondarily targeted to sites of immune recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.