Legal judgment prediction (LJP) is used to predict judgment results based on the description of individual legal cases. In order to be more suitable for actual application scenarios in which the case has cited multiple articles and has multiple charges, we formulate legal judgment prediction as a multiple label learning problem and present a deep learning model that can effectively encode the content of each legal case via a multi-residual convolution neural network and the semantics of law articles via an article encoder. An article-wise attention mechanism is proposed to fuse the two types of encoded information. Experimental results derived on the CAIL2018 datasets show that our model provides a significant performance improvement over the existing neural models in predicting relevant law articles and charges.
This paper proposes a multimodal fusion 3D target detection algorithm based on the attention mechanism to improve the performance of 3D target detection. The algorithm utilizes point cloud data and information from camera. For image feature extraction, the ResNet50+FPN architecture extracts features at four levels. Point cloud feature extraction employs the voxel method and FCN to extract point and voxel features. The fusion of image and point cloud features is achieved through regional point fusion and regional voxel fusion methods. After information fusion, the Coordinate attention mechanism and SimAM attention mechanism extract fusion features at a deep level. The algorithm's performance is evaluated using the DAIR-V2X dataset. The results show that compared to the Part-A2 algorithm, the proposed algorithm improves the mAP value by 7.9% in BEV view and 7.8% in 3D view at IOU=0.5 (cars) and IOU=0.25 (pedestrians and cyclist). At IOU=0.7 (cars) and IOU=0.5 (pedestrians and cyclist), the mAP value of the SECOND algorithm is improved by 5.4% in the BEV view and 4.3% in the 3D view, compared to other comparison algorithms.
Legal Judgment Prediction aims to automatically predict judgment outcomes based on descriptions of legal cases and established law articles, and has received increasing attention. In the preliminary work, several problems still have not been adequately solved. One is how to utilize limited but valuable label information. Existing methods mostly ignore the gap between the description of established articles and cases, but directly integrate them. Second, most studies ignore the mutual constraint among the subtasks, such as logically or semantically, each charge is only related to some specific articles. To address these issues, we first construct a crime similarity graph and then perform a distillation operation to collect discriminate keywords for each charge. Furthermore, we fuse these discriminative keywords instead of established article descriptions into case embedding with a cross-attention mechanism to obtain deep semantic representations of cases incorporating label information. Finally, under a constraint among subtasks, we optimize the one-hot representation of ground-truth labels to guarantee consistent results across the subtasks based on the label-enhancement algorithm. To verify the effectiveness and robustness of our framework, we conduct extensive experiments on two public datasets. The experimental results show that the proposed method outperforms the state-of-art models by 3.89%/7.92% and 1.23%/2.50% in the average MF1-score of the subtasks on CAIL-Small/Big, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.