The distribution and treatment of harmful gas (H 2 S) in the Liaohe Oilfi eld, Northeast China, were investigated in this study. It was found that abundant toxic gas (H 2 S) is generated in thermal recovery of heavy oil. The H 2 S gas is mainly formed during thermochemical sulfate reduction (TSR) occurring in oil reservoirs or the thermal decomposition of sulfocompounds (TDS) in crude oil. H 2 S generation is controlled by thermal recovery time, temperature and the injected chemical compounds. The quantity of SO 4 2-in the injected compounds is the most infl uencing factor for the rate of TSR reaction. Therefore, for prevention of H 2 S formation, periodic and effective monitoring should be undertaken and adequate H 2 S absorbent should also be provided during thermal recovery of heavy oil. The result suggests that great efforts should be made to reduce the SO 4 2-source in heavy oil recovery, so as to restrain H 2 S generation in reservoirs. In situ burning or desulfurizer adsorption are suggested to reduce H 2 S levels. Prediction and prevention of H 2 S are important in heavy oil production. This will minimize environmental and human health risks, as well as equipment corrosion.
The study assessed the overall soil characteristics of grasslands on Qilian Mountains and rated the soil nutrient status with classification standard of the second national soil survey of China. Nemerow index method was used to evaluate the soil fertility of different grassland types. GIS was used to analyze the spatial distribution of the soil nutrients and provided a database for the grassland’s ecological protection and restoration. The study graded the soil organic matter (SOM), total N, and available K at level 2 (high) or above for most regions, available soil-P at level 4, while the soil bulk density, total porosity and pH were 0.77–1.32 g cm−3, 35.36–58.83% and 7.63–8.54, respectively. The rank of comprehensive soil fertility index was temperate steppe (TS) > alpine meadow (AM) > alpine steppe (AS) >upland meadow (UM) >alpine desert (AD)> lowland meadow (LM)> temperate desert steppe (TDS)> temperate desert (TD). The areas with high, medium and low soil fertility accounted for 63.19%, 34.24% and 2.57% of the total grassland area. Soil fertility of different grassland types had different main limiting factors, for instance, the pH, total N and SOM were the main factors limiting soil fertility in LM, while pH and available P were the main factors limiting soil fertility in UM, AM, TS and AS. In summary, the grassland soil fertility was generally at the mid-upper level, and the main limiting factors were found in the different types of the grasslands and their spatial distributions were figured out. Our findings also indicated that the typical grasslands and meadows may require phosphorus application, while for desert grasslands, both nitrogen and phosphorus were required to improve their comprehensive soil fertility and grassland productivity.
This research was designed to explore the variation characteristics of soil C:N:P stoichiometry and enzyme activity in the Qilian Mountains different grassland types. Thus, 7 grassland types (Upland meadow: UM, Alpine meadow: AM, Temperate steppe: ST, Alpine steppe: AS, Temperate Desert Steppe: TDS, Temperate Desert: TD, Alpine desert: AD) of Qilian Natural Reserve were selected to analyze the variation characteristics of soil enzyme activities and stoichiometry of different grassland types and its relationship with environmental factors. The study indicated that the C/N, C/P, and N/P of different grasslands ranged from 5.08 to 17.35, 2.50 to 72.29, and 0.53 to 4.02.The ranking of different types grassland for the C/N was TS ≥ AM ≥ UM ≥ AS ≥ TDS > AD > TD, and the changing pattern of C/P and N/P is similar to that of C/N. The ranking of different types grassland for the urease enzyme activity was UM ≈AS > AD ≈TDS ≈TS ≈AM > TD, and TS ≈AM ≈UM ≈AS ≈AD > TDS > TD for alkaline phosphatase enzyme activity, and AS ≈AM ≈TS ≈TDS≥UM ≥TD ≈AD for catalase enzyme activity. Based on N/P ratio and RDA analysis, nitrogen was the main factor limiting the grassland productivity, and pH, TN, SOC, Richness index and Simpson diversity index were the main environmental factors affecting the soil C:N:P stoichiometry and enzyme activities. Cluster analysis showed that 7 grassland types were clustered into three categories. In conclusion, the stoichiometric characteristics and soil enzyme activities of different grasslands vary with grassland types. Nitrogen was the main factor limiting the grasslands productivity, and pH, TN, SOC, Richness index and Simpson diversity index were the main environmental factors affecting the soil C:N:P stoichiometry and enzyme activities, and the grassland Qilian Mountain can be managed in the ecological district according to the clustering results. The results of this study can provide data support and theoretical guidance for the scientific management and ecological protection of grassland in Qilian Mountains Reserve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.