Generating pictures from text is an interesting, classic, and challenging task. Benefited from the development of generative adversarial networks (GAN), the generation quality of this task has been greatly improved. Many excellent cross modal GAN models have been put forward. These models add extensive layers and constraints to get impressive generation pictures. However, complexity and computation of existing cross modal GANs are too high to be deployed in mobile terminal. To solve this problem, this paper designs a compact cross modal GAN based on canonical polyadic decomposition. We replace an original convolution layer with three small convolution layers and use an autoencoder to stabilize and speed up training. The experimental results show that our model achieves 20% times of compression in both parameters and FLOPs without loss of quality on generated images.
Text-to-image synthesis is an important and challenging application of computer vision. Many interesting and meaningful text-to-image synthesis models have been put forward. However, most of the works pay attention to the quality of synthesis images, but rarely consider the size of these models. Large models contain many parameters and high delay, which makes it difficult to be deployed on mobile applications. To solve this problem, we propose an efficient architecture CPGAN for text-to-image generative adversarial networks (GAN) based on canonical polyadic decomposition (CPD). It is a general method to design the lightweight architecture of text-to-image GAN. To improve the stability of CPGAN, we introduce conditioning augmentation and the idea of autoencoder during the training process. Experimental results prove that our architecture CPGAN can maintain the quality of generated images and reduce at least 20% parameters and flops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.