The rational design of a proper electrode structure with high energy and power densities, long cycling lifespan, and low cost still remains a significant challenge for developing advanced energy storage systems. Germanium is a highly promising anode material for high‐performance lithium ion batteries due to its large specific capacity and remarkable rate capability. Nevertheless, poor cycling stability and high price significantly limit its practical application. Herein, a facile and scalable structural engineering strategy is proposed by controlling the nucleation to fabricate a unique hierarchical micro‐nanostructured Ge–C framework, featuring high tap density, reduced Ge content, superb structural stability, and a 3D conductive network. The constructed architecture has demonstrated outstanding reversible capacity of 1541.1 mA h g−1 after 3000 cycles at 1000 mA g−1 (with 99.6% capacity retention), markedly exceeding all the reported Ge–C electrodes regarding long cycling stability. Notably, the assembled full cell exhibits superior performance as well. The work paves the way to constructing novel metal–carbon materials with high performance and low cost for energy‐related applications.
Endoplasmic reticulum (ER) stress, which is highly associated with cardiovascular disease, is triggered by a disturbance in ER function because of protein misfolding or an increase in protein secretion. Prolonged disruption of ER causes ER stress and activation of the unfolded protein response (UPR) and leads to various diseases. Eukaryotic cells respond to ER stress via three major sensors that are bound to the ER membrane: activating transcription factor 6 (ATF6), inositol-requiring protein 1α (IRE1α), and protein kinase RNA-like ER kinase (PERK). Chronic activation of ER stress causes damage in endothelial cells (EC) via apoptosis, inflammation, and oxidative stress signaling pathways. The alleviation of ER stress has recently been accepted as a potential therapeutic target to treat cardiovascular diseases such as heart failure, hypertension, and atherosclerosis. Exercise training is an effective nonpharmacological approach for preventing and alleviating cardiovascular disease. We here review the recent viewing of ER stress-mediated apoptosis and inflammation signaling pathways in cardiovascular disease and the role of exercise in ER stress-associated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.