Recently, aqueous Zn-ion rechargeable batteries have drawn increasing research attention as an alternative energy storage system relative to the current Li-ion batteries due to their intrinsic properties of high safety, low cost, and high theoretical volumetric capacity. Nevertheless, unwanted dendrite growth on the Zn anode and unstable cathode materials restrict their practical application. In this study, a unique 2D MoS2 coating on a Zn anode using an electrochemical deposition method has been developed for preventing dendrite growth and intricate side reactions. The coated MoS2 layer is a vertically oriented structure that makes the flow of Zn ions easy with a uniform electric field distribution on the anode, resulting in a uniform stripping and plating of Zn2+. In addition, the MoS2 coating enhances anodic diffusion of Zn ions and reduces the series resistance as confirmed by EIS analysis and therefore improves the overall battery performance. The full cell assembled with the MoS2–Zn anode and MnO2 cathode exhibits an excellent reversible specific capacity of 638 mAh/g at 0.1 A/g and stable cycle performance over 2000 cycles with no dendrite formation at the Zn electrode. The presented MoS2 coating on Zn is a facile, scalable, and promising technology for practical Zn-ion batteries with a long life cycle and high safety.
Piezoelectricity in two-dimensional (2D) transition-metal dichalcogenides (TMDs) has attracted significant attention due to their unique crystal structure and the lack of inversion centers when the bulk TMDs thin down to monolayers. Although the piezoelectric effect in atomic-thickness TMDs has been reported earlier, they are exfoliated 2D TMDs and are therefore not scalable. Here, we demonstrate a superior piezoelectric effect from large-scale sputtered, asymmetric 2D MoS 2 using meticulous defect engineering based on the thermal-solvent annealing of the MoS 2 layer. This yields an output peak current and voltage of 20 pA and 700 mV (after annealing at 450 °C), respectively, which is the highest piezoelectric strength ever reported in 2D MoS 2 . Indeed, the piezoelectric strength increases with the defect density (sulfur vacancies), which, in turn, increases with the annealing temperature at least up to 450 °C. Moreover, our piezoelectric MoS 2 device array shows an exceptional piezoelectric sensitivity of 262 mV/kPa with a high level of uniformity and excellent performance under ambient conditions. A detailed study of the sulfur vacancy-dependent property and its resultant asymmetric structure-induced piezoelectricity is reported. The proposed approach is scalable and can produce advanced materials for flexible piezoelectric devices to be used in emerging bioinspired robotics and biomedical applications.
Atomically thin two-dimensional transition metal dichalcogenides (2D TMDs) are of interest for neuromorphic computing due to their extraordinary properties such as low power consumption, robustness, flexibility, and layered anisotropic transport properties. Here, we present metal-ion assisted 2D MoS 2 neuromorphic devices fabricated using a simple sputtering method. This method enables us to synthesize large-scale and uniform nanostructured polycrystalline MoS 2 films on flexible substrates. We found that the small grain of the MoS 2 film effectively enhances the ion transport through the grain boundaries or interfaces in the MoS 2 film, which results in excellent neuromorphic characteristics such as bipolar electrical property, short-/long-term plasticity (STP/LTP) with a high ratio of I LRS / I HRS (∼10 5 ), paired-pulse facilitation (PPF), and stability. Furthermore, it was found that the memory performance parameters such as the SET/RESET voltage (V SET /V RESET ) and the programming/erasing current ratio (I on /I off ) can be affected by the concentration of ions inserted into MoS 2 . This work provides insight for realizing practical neuromorphic devices and understanding ion-mediated synaptic behavior of nanocrystal structures, which can be tuned for high-efficiency neuromorphic devices.
Piezoelectric materials are widely used as electromechanical couples for a variety of sensors and actuators in nanoscale electronic devices. The majority of piezoelectric devices display lateral patterning of counter electrodes beside active materials such as two-dimensional transition metal dichalcogenides (2D TMDs). As a result, their piezoelectric output response is strongly dependent on the lattice orientation of the 2D TMD crystal structure, limiting their piezoelectric properties. To overcome this issue, we fabricated a vertical sandwich design of a piezoelectric sensor with a conformal contact to enhance the overall piezoelectric performance. In addition, we enhanced the piezoelectric properties of 2D WS2 by carrying out a unique solvent-vapor annealing process to produce a sulfur-deficient WS2(1-x) structure that yielded a 3-fold higher piezoelectric response voltage (96.74 mV) than did pristine WS2 to a 3 kPa compression. Our device was also found to be stable: it retained its piezoelectric performance even after a month in an ambient atmospheric condition. Our study has revealed a facile methodology for fabricating large-scale piezoelectric devices using an asymmetrically engineered 2D WS2 structure.
Neuromorphic computing based on two-dimensional transition-metal dichalcogenides (2D TMDs) has attracted significant attention recently due to their extraordinary properties generated by the atomic-thick layered structure. This study presents sulfur-defect-assisted MoS2 artificial synaptic devices fabricated by a simple sputtering process, followed by a precise sulfur (S) vacancy-engineering process. While the as-sputtered MoS2 film does not show synaptic behavior, the S vacancy-controlled MoS2 film exhibits excellent synapse with remarkable nonvolatile memory characteristics such as a high switching ratio (∼103), a large memory window, and long retention time (∼104 s) in addition to synaptic functions such as paired-pulse facilitation (PPF) and long-term potentiation (LTP)/depression (LTD). The synaptic device working mechanism of Schottky barrier height modulation by redistributing S vacancies was systemically analyzed by electrical, physical, and microscopy characterizations. The presented MoS2 synaptic device, based on the precise defect engineering of sputtered MoS2, is a facile, low-cost, complementary metal-oxide semiconductor (CMOS)-compatible, and scalable method and provides a procedural guideline for the design of practical 2D TMD-based neuromorphic computing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.