Orthogonal dual-wavelength dual-pulse laser-induced breakdown spectroscopy (ODWDP-LIBS) with 266+1064 nm wavelength combination was applied to realize silver jewelry microanalysis with enhanced sensitivity and minimal sample ablation. In this technique, the 266 nm laser with low pulse energy was selected as ablation laser and the time-delayed 1064 nm laser with moderate pulse energy was selected as reheating laser to enhance plasma emission. Significant signal enhancement was achieved under the excitation of the reheating laser without increasing mass ablation which was only determined by the ablation laser. Internal standard method was applied to realize quantitative analysis of copper impurity in silver jewelry samples. The calibration curve was built, and the limit of detection of copper in silver matrix was determined to be 37.4 ppm when the crater diameter was controlled at 6.5 μm. This technique is especially useful for microanalysis of precious samples due to the property of less sample ablation in comparison with single-pulse laser-induced breakdown spectroscopy (SP-LIBS) under the same analytical sensitivity.
Laser-ablation laser-induced breakdown spectroscopy (LA-LIBS) based on single Nd:YAG laser is used to analyze copper impurity in silver jewellery with enhanced sensitivity and minimal sample ablation. 6-30 folds signal enhancement can be achieved under the re-excitation of the breakdown laser and the spatial resolution is only determined by the ablation laser. 50 ppm limit of detection of copper is achieved when the crater diameter is 17.2 µm under current experimental condition. This technique gives higher analysis sensitivity under the same sample ablation in comparison with single pulse (SP) LIBS. It is useful for high sensitive element microanalysis of precious samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.