Underpinning many recent advances in sensing applications (e.g., mHealth) is the ability to safely collect and share mobile sensor data. Research has shown that even from seemingly harmless sensors (e.g., accelerometers, gyroscopes, or magnetometers) an ever expanding set of potentially sensitive user behavior can be inferred. Providing robust anonymity assurances is a principal mechanism for protecting users when data is shared (e.g., with medical professionals or friends). In this paper, we study the feasibility of user de-anonymization from mobile sensor datasets routinely collected on commodity devices (e.g., smartphones). We perform a systematic investigation to quantify the threat of de-anonymization using existing sparsity-based techniques adapted to exploit mobile sensor data characteristics. This preliminary study indicates significant threats to user anonymity exist within shared mobile sensor data and further investigation is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.