Seven infilled reinforced concrete (RC) frames strengthening with profiled steel sheet bracing are researched on the effect of axial compression ratio (0.3~0.9). Hysteretic curves, envelope curves, stiffness degradation curves, ductility and energy dissipation capacity are analysed in the finite element. The results show that profiled steel sheet bracing plays a good role in reinforcing infilled RC frames and the hysteretic curves express plump relatively. With the increase of axial compression ratio, the bearing capacity is improved significantly. The axial compression ratio has little effect on the lateral stiffness of the structure, and the initial stiffness increases slightly with the increase of axial compression ratio. The structure has good ductility when the axial compression ratio is less than 0.6. The ductility is declined with the increase of axial compression ratio. As the displacement increases, the energy dissipation capacity of the specimens increases. However, the energy dissipation capacity is reduced as the increase of axial compression ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.