Lead halide perovskite has become a promising candidate for high-performance photodetectors (PDs) due to its attractive optical and electrical properties, such as high optical absorption coefficient, high carrier mobility, and long carrier diffusion length. However, the presence of highly toxic lead in these devices has limited their practical applications and even hindered their progress toward commercialization. Therefore, the scientific community has been committed to searching for low-toxic and stable perovskite-type alternative materials. Lead-free double perovskite, which is still in the preliminary stage of exploration, has achieved inspiring results in recent years. In this review, we mainly focus on two types of lead-free double perovskite based on different Pb substitution strategies, including A2M(I)M(III)X6 and A2M(IV)X6. We review the research progress and prospects of lead-free double perovskite photodetectors in the past three years. More importantly, from the perspective of optimizing the inherent defects in materials and improving device performance, we propose some feasible pathways and make an encouraging perspective for the future development of lead-free double perovskite photodetectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.