Bicontinuous interfacially jammed emulsion gels ("bijels") are a new class of soft matter containing two interpenetrating continuous phases. They have great potential for applications in many areas. However, difficulties in fabricating bijels and controlling structural features of interest have posed severe barriers to their wide applications. In this study, a phase inversion-based technique was developed for fabricating bijels and bijels-derived structures. The effects of varying the composition of casting solutions for the fabrication of bijels on the porosity, oil-towater percentage, and domain size of bijels were investigated. Composite bijels prepared from two organic monomers were also made, demonstrating the flexibility of the phase inversion-based technique for the fabrication of bijels. Interestingly, the incorporation of a second monomer into the casting solution also affected the porosity and domain size of bijels formed, which may provide a new strategy for the controlled fabrication of bijels. Doxorubicin hydrochloride (DOX, as a model drug)-loaded bijels-derived hybrid hydrogels comprising two continuous phases were successfully made, with one phase being cross-linked alginate that carried the drug. Controlled release of DOX from the bijels-derived structures could be achieved. In vitro degradation study indicated that cross-linking of alginate in bijels-derived hybrid hydrogels controlled alginate degradation, thereby affecting the DOX release behavior. Our current work has provided a facile and reproducible protocol for the controlled fabrication of bijels and bijels-derived structures, which facilitates expanding their applications in the biomedical field.
Structures having continuous porous networks are of great interest for applications in areas such as separation, energy storage, and tissue engineering. Bicontinuous interfacially jammed emulsion gels ("bijels") have been actively investigated as templates for fabricating useful structures for such applications. However, the fabrication of bijels-templated porous nanocomposites incorporated with reinforcing or functional nanoparticles (or nanofibers) to provide specific, targeted functions is still a challenge, stemming from the difficulties of fabricating functional nanoparticle-containing bijels. In this study, bijels-derived porous nanocomposites incorporated with multiwalled carbon nanotubes (MWCNTs), which possessed interconnected channels inside the structures, were made via a facile phase inversion technique for bijels fabrication. For the composite manufacture, in the first step of bijels fabrication, MWCNT adsorption into the oil phase of bijels was observed. It was revealed that MWCNTs were physically absorbed into the oil-rich phase without disrupting the bicontinuous structure of bijels. The successful fabrication of non-crosslinked and crosslinked porous structures containing MWCNTs was evidenced through imaging by confocal laser scanning microscopy and scanning electron microscopy, respectively. For potential controlled release applications, an anticancer drug, doxorubicin hydrochloride (DOX), was incorporated into bijels-derived structures and nanocomposites. The in vitro DOX release profiles from drug delivery systems based on bijels-derived MWCNT-containing nanocomposites suggested that the photothermal effect of MWCNTs initiated by near-infrared irradiation could modulate the drug release behavior. Overall, this study has developed a facile approach to fabricate bijels-templated bicontinuous porous structures incorporated with functional nanoparticles (or nanofibers) and opened an avenue for making MWCNT-containing porous nanocomposites for controlled drug release applications.
Organoids as three-dimension (3D) cellular organizations partially mimic the physiological functions and micro-architecture of native tissues and organs, holding great potential for clinical applications. Advances in the identification of essential factors including physical cues and biochemical signals for controlling organoid development have contributed to the success of growing liver organoids from liver tissue and stem/progenitor cells. However, to recapitulate the physiological properties and the architecture of a native liver, one has to generate liver organoids that contain all the major liver cell types in correct proportions and relative 3D locations as found in a native liver. Recent advances in stem-cell-, biomaterial- and engineering-based approaches have been incorporated into conventional organoid culture methods to facilitate the development of a more sophisticated liver organoid culture resembling a near to native mini-liver in a dish. However, a comprehensive review on the recent advancement in the bioengineering liver organoid is still lacking. Here, we review the current liver organoid systems, focusing on the construction of the liver organoid system with various cell sources, the roles of growth factors for engineering liver organoids, as well as the recent advances in the bioengineering liver organoid disease models and their biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.