The natural environment of plants is composed of a complex set of abiotic stresses and their ability to respond to these stresses is highly flexible and finely balanced through the interaction between signaling molecules. In this review, we highlight the integrated action between reactive oxygen species (ROS) and reactive nitrogen species (RNS), particularly nitric oxide (NO), involved in the acclimation to different abiotic stresses. Under stressful conditions, the biosynthesis transport and the metabolism of ROS and NO influence plant response mechanisms. The enzymes involved in ROS and NO synthesis and scavenging can be found in different cells compartments and their temporal and spatial locations are determinant for signaling mechanisms. Both ROS and NO are involved in long distances signaling (ROS wave and GSNO transport), promoting an acquired systemic acclimation to abiotic stresses. The mechanisms of abiotic stresses response triggered by ROS and NO involve some general steps, as the enhancement of antioxidant systems, but also stress-specific mechanisms, according to the stress type (drought, hypoxia, heavy metals, etc.), and demand the interaction with other signaling molecules, such as MAPK, plant hormones, and calcium. The transduction of ROS and NO bioactivity involves post-translational modifications of proteins, particularly S-glutathionylation for ROS, and S-nitrosylation for NO. These changes may alter the activity, stability, and interaction with other molecules or subcellular location of proteins, changing the entire cell dynamics and contributing to the maintenance of homeostasis. However, despite the recent advances about the roles of ROS and NO in signaling cascades, many challenges remain, and future studies focusing on the signaling of these molecules in planta are still necessary.
-The objective of this work was to evaluate the translocation of glyphosate in C. bonariensis plants resistant and susceptible to that herbicide. The 14 C-glyphosate was mixed with commercial gyhphosate (800 g ha -1 ) and applied on the center of the adaxial face of a third node leaf, using a micro syringe, and adding 10 µL of a solution with specific activity of 1,400 Bq, 45 days after plant emergence. The concentration of the glyphosate translocated in the plant was evaluated at time intervals of 6, 12, 36 and 72 hours after being applied on the application leaf, stem, roots and leaves. Ten hours after treatment application, the distribution of the product in the application leaf, divided into base, center and apex, was also evaluated by measuring the radiation emitted by 14 C-glyphosate in a liquid scintillation spectrometer. Greater glyphosate retention was observed in the resistant biotype leaf, approximately 90% of the total absorbed up to 72 hours. In the susceptible biotype, this value was close to 70% in the same period. Susceptible biotype leaves, stem and roots showed greater concentration of glyphosate, indicating greater translocation efficiency in this biotype. In the resistant biotype, the herbicide accumulated in greater quantity at the apex and center of the application leaf, while in the susceptible biotype greater accumulation was observed at the base and center leaf. Thus, it can be stated that the resistance mechanism is related to the differential translocation of this herbicide in the biotypes.Keywords: herbicides, radiochemical, resistance, translocation.RESUMO -Objetivou-se com este trabalho avaliar a translocação do glyphosate em plantas de C. bonariensis resistentes e suscetíveis a esse herbicida. Para isso aplicou-se o 14 Cglyphosate em mistura com glyphosate comercial (800 g ha ) sobre o centro da face adaxial da folha do terceiro nó, utilizando-se uma microsseringa, adicionando-se 10 µL da calda com atividade específica de 1.400 Bq, aos 45 dias após a emergência da buva. A concentração de glyphosate translocado na planta foi avaliada em intervalos de tempo de 6, 12, 36 e 72 horas após a aplicação, na folha de aplicação, no caule, nas raízes e nas folhas. Dez horas após a aplicação dos tratamentos (HAT) avaliou-se também a distribuição do produto na folha de aplicação, dividida em base, centro e ápice. As avaliações foram realizadas por meio da medição da radiação emitida pelo 14 C-glyphosate, em espectrômetro de cintilação líquida. Maior retenção de glyphosate foi observada na folha tratada do biótipo resistente, aproximadamente 90 % do total absorvido até as 72 horas. No biótipo suscetível esse valor foi de cerca de 70 % no mesmo período. Nas folhas, no caule e nas raízes, a maior concentração do glyphosate absorvido foi encontrada no biótipo suscetível, indicando maior eficiência de translocação neste biótipo. No biótipo resistente o herbicida se acumulou em maior quantidade no ápice e no centro da folha de aplicação e no suscetível observou-se maior acúmulo na base e no ...
High arsenic (As) concentrations are toxic to all the living organisms and the cellular response to this metalloid requires the involvement of cell signaling agents, such as nitric oxide (NO). The As toxicity and NO signaling were analyzed in Pistia stratiotes leaves. Plants were exposed to four treatments, for 24 h: control; SNP [sodium nitroprusside (NO donor); 0.1 mg L-1]; As (1.5 mg L-1) and As + SNP (1.5 and 0.1 mg L-1, respectively). The absorption of As increased the concentration of reactive oxygen species and triggered changes in the primary metabolism of the plants. While photosynthesis and photorespiration showed sharp decrease, the respiration process increased, probably due to chemical similarity between arsenate and phosphate, which compromised the energy status of the cell. These harmful effects were reflected in the cellular structure of P. stratiotes, leading to the disruption of the cells and a possible programmed cell death. The damages were attenuated by NO, which was able to integrate central plant physiological processes, with increases in non-photochemical quenching and respiration rates, while the photorespiration level decreased. The increase in respiratory rates was essential to achieve cellular homeostasis by the generation of carbon skeletons and metabolic energy to support processes involved in responses to stress, as well to maintaining the structure of organelles and prevent cell death. Overall, our results provide an integrated view of plant metabolism in response to As, focusing on the central role of NO as a signaling agent able to change the whole plant physiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.