A transimpedance amplifier has been designed for scanning tunneling microscopy (STM). The amplifier features low noise (limited by the Johnson noise of the 1 GΩ feedback resistor at low input current and low frequencies), sufficient bandwidth for most STM applications (50 kHz at 35 pF input capacitance), a large dynamic range (0.1 pA to 50 nA without range switching) as well as a low input voltage offset. The amplifier is also suited for placing its first stage into the cryostat of a low-temperature STM, minimizing the input capacitance and reducing the Johnson noise of the feedback resistor. The amplifier may also find applications for specimen current imaging and electron-beam induced current measurements in scanning electron microscopy, and as a photodiode amplifier with a large dynamic range. This paper also discusses sources of noise including the often neglected effect of non-balanced input impedance of operational amplifiers, and describes how to accurately measure and adjust the frequency response of low-current transimpedance amplifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.