Boronizing is a thermochemical process in which the boron atoms are introduced into the steel surfaces. During this process, the boride layers with high hardness, wear-and corrosion-resistance are formed. In this study, the Royalloy (0.05 wt.% C; 12.6 wt.% Cr; 0.4 wt.% Si and 1.2 wt.% Mn) steel was powder-boronized at 900, 950, 975, 1000 or 1050 °C, and for 1, 3, 5, 7 or 10 h. The boronized samples were analyzed by X-ray diffraction analysis (XRD) to analyze their phase composition, and by scanning electron microscope to analyze their thickness and morphology at the interface with the substrate. To investigate the chemical elements redistribution during the boronizing process, the EDS mapping and EDS point analysis were used. The treatments produced boride layers with a thickness from 8 to 168 µm, depending on the boronizing parameters. During the boronizing process, the chromium was redistributed between the boride layers, where creates the chromium borides, and the transient region underneath the boride layers, where creates the particles with the biggest amount of chromium. The silicon was focused at the layersubstrate interfaces. The concentration of manganese was slightly higher in substrate compared to the boride layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.