Gaussian process (GP) regression has been widely used in supervised machine learning due to its flexibility and inherent ability to describe uncertainty in function estimation. In the context of control, it is seeing increasing use for modeling of nonlinear dynamical systems from data, as it allows the direct assessment of residual model uncertainty. We present a model predictive control (MPC) approach that integrates a nominal system with an additive nonlinear part of the dynamics modeled as a GP. Approximation techniques for propagating the state distribution are reviewed and we describe a principled way of formulating the chance constrained MPC problem, which takes into account residual uncertainties provided by the GP model to enable cautious control. Using additional approximations for efficient computation, we finally demonstrate the approach in a simulation example, as well as in a hardware implementation for autonomous racing of remote controlled race cars, highlighting improvements with regard to both performance and safety over a nominal controller.
In this paper, we present a learning-based control approach for autonomous racing with an application to the AMZ Driverless race car gotthard. One major issue in autonomous racing is that accurate vehicle models that cover the entire performance envelope of a race car are highly nonlinear, complex and complicated to identify, rendering them impractical for control. To address this issue, we employ a relatively simple nominal vehicle model, which is improved based on measurement data and tools from machine learning. The resulting formulation is an online learning data-driven Model Predictive Controller, which uses Gaussian Processes regression to take residual model uncertainty into account and achieve safe driving behavior. To improve the vehicle model online, we select from a constant inflow of data points according to a criterion reflecting the information gain, and maintain a small dictionary of 300 data points. The framework is tested on the full-size AMZ Driverless race car, where it is able to improve the vehicle model and reduce lap times by 10% while maintaining safety of the vehicle.
This paper presents the algorithms and system architecture of an autonomous racecar. The introduced vehicle is powered by a software stack designed for robustness, reliability, and extensibility. To autonomously race around a previously unknown track, the proposed solution combines state of the art techniques from different fields of robotics. Specifically, perception, estimation, and control are incorporated into one high‐performance autonomous racecar. This complex robotic system, developed by AMZ Driverless and ETH Zürich, finished first overall at each competition we attended: Formula Student Germany 2017, Formula Student Italy 2018 and Formula Student Germany 2018. We discuss the findings and learnings from these competitions and present an experimental evaluation of each module of our solution.
This paper presents the algorithms and system architecture of an autonomous racecar. The introduced vehicle is powered by a software stack designed for robustness, reliability, and extensibility. In order to autonomously race around a previously unknown track, the proposed solution combines state of the art techniques from different fields of robotics. Specifically, perception, estimation, and control are incorporated into one high-performance autonomous racecar. This complex robotic system, developed by AMZ Driverless and ETH Zurich, finished 1st overall at each competition we attended: Formula Student Germany 2017, Formula Student Italy 2018 and Formula Student Germany 2018. We discuss the findings and learnings from these competitions and present an experimental evaluation of each module of our solution.
In this work, we propose the world's first closed-loop ML-based planning benchmark for autonomous driving. While there is a growing body of ML-based motion planners, the lack of established datasets and metrics has limited the progress in this area. Existing benchmarks for autonomous vehicle motion prediction have focused on short-term motion forecasting, rather than long-term planning. This has led previous works to use open-loop evaluation with L2-based metrics, which are not suitable for fairly evaluating long-term planning. Our benchmark overcomes these limitations by introducing a largescale driving dataset, lightweight closed-loop simulator, and motion-planning-specific metrics. We provide a highquality dataset with 1500h of human driving data from 4 cities across the US and Asia with widely varying traffic patterns (Boston, Pittsburgh, Las Vegas and Singapore). We will provide a closed-loop simulation framework with reactive agents and provide a large set of both general and scenario-specific planning metrics. We plan to release the dataset at NeurIPS 2021 and organize benchmark challenges starting in early 2022.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.