The ground and excited states of neutral and cationic PuO and PuO 2 have been studied with multiconfigurational quantum chemical methods followed by second order perturbation theory, the CASSCF/CASPT2 method. Scalar relativistic effects and spin-orbit coupling have been included in the treatment. As literature values for the ionization energy of PuO 2 are in the wide range of ~6.6 eV to ~10.1 eV, a central goal of the computations was to resolve these discrepancies; the theoretical results indicate that the ionization energy is near the lower end of this range. The calculated ionization energies for PuO, PuO + and PuO 2 + are in good agreement with the experimental values.
Several monouranium and diuranium polyhydride molecules were investigated using quantum chemical methods. The infrared spectra of uranium and hydrogen reaction products in condensed neon and pure hydrogen were measured and compared with previous argon matrix frequencies. The calculated molecular structures and vibrational frequencies were used to identify the species present in the matrix. Major new absorptions were observed and compared with the previous argon matrix study. Spectroscopic evidence was obtained for the novel complex, UH 4 (H 2 ) 6 , which has potential interest as a metal hydride with a large number of hydrogen atoms bound to uranium. Our calculations show that the series of complexes UH 4 (H 2 ) 1,2,4,6 are stable.
Americium and curium oxides AmOn and CmOn (n = 1, 2) were studied using state-of-the-art multiconfigurational, relativistic, quantum chemical methods. Spectroscopic properties for the ground state and several excited states of the four target compounds were determined. The computed dissociation energy of AmO (4.6 eV) agrees fairly well with estimates derived from experimental studies (5.73 +/- 0.37 eV) while the computed dissociation energy of CmO (7.1 eV) agrees well with the experimental value (7.5 eV). The computed ionization energy of AmO (6.3 eV) is in good agreement with the current experimental value (5.9 +/- 0.2 eV).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.