Linking topology in oligocarbazoles (see figure) has a strong influence on their electronic properties. 3(6),9′‐linked oligocarbazoles exhibit unusual suppression of electronic coupling between units, leading to localized excited states and very small reduction of triplet energies (compared to the monomer). Coupled with their excellent morphological stability, this makes them suitable as host materials for blue electrophosphorescence devices.
The starburst carbazole derivative
and phosphorescent bis-cyclometalated
iridium(III) complex (IC2) were used for the preparation
of multilayered “warm-white” organic light-emitting
diodes (OLEDs), the emission spectra of which are modulated by the
thickness of the phosphorescent layer. It was shown that the electroluminescence
spectra of the fabricated devices are more extended into the visible
region compared with the photoluminescence spectra of both component
materials. The observed extension of the electroluminescence spectra
can be assigned to the phosphorescent emission of the low-energy exciplex
formed at the interface of the emissive layers. The quantum-chemical
calculations performed by the DFT and (TD) DFT methods support the
formation of the low-energy triplet exciplex at the interface of the IC2 layer and the neighboring layer of the starshaped carbazole-based
compound, (4,4′,4″-tris[3-methylphenyl(phenyl)amino]
triphenylamine, tri(9-hexylcarbazol-3-yl)amine (THCA). Indeed, the triplet excited state of such bimolecular complex corresponds
to intermolecular charge transfer between IC2 and THCA. The experimentally observed electrophosphorescence of
these exciplexes is induced by strong spin–orbit coupling in
the THCA:IC2 complexes due to the Ir(III) heavy atom
effect. With dependence on the iridium(III)-complex film thickness
(5–9 nm), the CIE coordinates changed from (0.41, 0.41) to
(0.52, 0.47), corresponding to the warm white and orange color. The
brightness of the fabricated OLEDs at the 15 V bias was in the range
from 500 to 6000 cd/m2.
A series of perylenediimide-based small molecules (PDI1-PDI5) containing electron-deficient groups in the bay region were synthesized and characterized. The PDI derivatives were found to be capable of forming molecular glasses with glass transition temperatures ranging from 50 to 102 degrees C. Detailed investigations of the optical properties of the synthesized derivatives were performed and compared with those obtained from quantum chemical calculations. Optimized molecular structures of the PDI derivatives exhibited core-twisting by 16 degrees and torsional angle between the bay substituent and the perylene core in the range of 60-72 degrees. The PDI derivatives exhibited absorption maxima in the range of 2.27-2.36 eV and emission maxima in the range of 2.10-2.28 eV. The impact of the bay substituents on the emission, fluorescence quantum yield, and lifetimes in solutions and thin films was established. The red shift of emission maxima (from 2.282 to 2.095 eV) observed for various PDIs in solutions was accompanied by significant reduction in the emission quantum yield (from 0.73 to 0.44) and corresponding increase of the fluorescence lifetime (from 4.5 to 6.8 ns). This was in agreement with quantum chemical calculations indicating decrease of the radiative relaxation rate due to reduction of the oscillator strength and remarkable decrease of the torsional activation barrier. The spectral properties of the wet-casted perylenediimide films featuring different bay substituents were also studied. The variation in the emission peak (of 0.25 eV) and the considerable increase of the Stokes shift (of 0.4 eV) are explained in terms of the formation of the amorphous state. The influence of the bay substituents on the thermal and spectral properties of the films are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.