Hydrophilic porous materials are recognized as very promising materials for water-sorption-based energy storage and transformation. In this study, a porous, zeolite-like aluminophosphate with LTA (Linde Type A) topology is inspected as an energy-storage material. The study is motivated by the material's high predicted pore volume. According to sorption and calorimetric tests, the aluminophosphate outperforms all other zeolite-like and metal-organic porous materials tested so far. It adsorbs water in an extremely narrow relative-pressure interval (0.10 < p/p 0 < 0.15) and exhibits superior water uptake (0.42 g g −1 ) and energy-storage capacity (527 kW h m −3 ). It also shows remarkable cycling stability; after 40 cycles of adsorption/desorption its capacity drops by less than 2%. Desorption temperature for this material, which is one of crucial parameters in applications, is lower from desorption temperatures of other tested materials by 10-15 °C. Furthermore, its heatpump performance is very high, allowing efficient cooling in demanding conditions (with cooling power up to 350 kW h m −3 even at 30 °C temperature difference between evaporator and environment). On the microscopic scale, sorption mechanism in AlPO 4 -LTA is elucidated by X-ray diffraction, nuclear magnetic resonance measurements, and first-principles calculations. In this aluminophosphate, energy is stored predominately in hydrogen-bonded network of water molecules within the pores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.