Bottom outlets involve high-velocity air-water flow. Depending on the tunnel length, both air entrainment and air detrainment processes are significant. These processes are evaluated using a hydraulic model consisting of a long rectangular tunnel with a bottom slope larger than the critical slope. Expressions are presented for the maximum air concentration and its streamwise development along the tunnel. A prediction of mixture flow depth along the tunnel is developed. Design guidelines are presented relating to the flow pattern required, the air supply system, and the downstream submergence. The effect of tunnel length on the development of mixture flow characteristics is also outlined. A typical example shows the design procedure for bottom outlets.Key words: air entrainment, air-water flow, high-velocity flow, tunnel flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.