Infection continues to be one of the major complications of cerebrospinal¯uid (CSF) shunting procedures, and is caused mainly by skin-derived bacteria. Production of an extracellular bio®lm plays an important role in the pathogenesis of shunt-associated infections by protecting bacteria from immune mechanisms and antibiotics. So far, removal of the original shunt and implantation of a new shunting device has been the only successful treatment for most patients. As an alternative strategy to prevent CSF infections, a rifampin-impregnated silicone catheter was designed to provide high initial and long-lasting (>60 days) release of bactericidal drug. To investigate the pathophysiological mechanism of its function, this new device was investigated both in vitro and in a rodent model of CSF infection by scanning electron microscopy (SEM) and bacterial culture. Staphylococcus epidermidis (10 8 cfu=ml) and S. aureus (10 4 cfu=ml) served as test strains. SEM demonstrated that, in contrast to the unloaded catheters, initial bacterial adherence on the catheter surface could be reduced to a few single cells, which did not show visible signs of proliferation. Bacterial cultures obtained simultaneously were all sterile, showing that adherent bacteria were killed immediately by the rifampin released from the catheter. Although rifampin incorporation into silicone polymers was not able to prevent initial bacterial adhesion completely, subsequent colonisation could be prevented.
Macrophages were identified as a major cellular source of TGF-β in advanced HLF and may perpetuate further hypertrophy. This finding suggests that modulating the immune response locally or systemically could prove to be effective for impeding the disease progress.
Despite aggressive multimodal treatment approaches, the prognosis for patients with diffuse gliomas remains disappointing. Glioma cells often extensively infiltrate in the surrounding brain parenchyma, a phenomenon that helps them to escape surgical removal, radiation exposure and chemotherapy. Moreover, conventional therapy is often associated with considerable local and systemic side effects. Therefore, the development of novel therapeutic approaches is essential to improve the outcome of these patients. Immunotherapy offers the opportunity to specifically target residual radio-and chemoresistant tumor cells without damaging healthy neighboring brain tissue. Significant progress has been made in recent years both in understanding the mechanisms of immune regulation in the central nervous system (CNS) as well as tumor-induced and host-mediated immunosuppression elicited by gliomas. In this review, after discussing the special requirements needed for the initiation and control of immune responses in the CNS, we focus on immunological phenomena observed in glioma patients, discuss different immunological approaches to attack glioma-associated target structures and touch on further strategies to improve the efficacy of immunotherapy of gliomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.