Recent reports on local extinctions of arthropod species1 and of massive declines in arthropod biomass 2 point to land-use intensification as a major driver of decreasing biodiversity. However, there are no multi-site time-series of arthropod occurrences across land-use intensity gradients to confirm causal relationships. Moreover, it remains unclear which land-use types and arthropod groups are affected and whether the observed declines in biomass and diversity are linked to one another and continue. Here we analyzed arthropod data on more than 1 million individuals and 2,700 species from standardized inventories from 2008 to 2017 at 150 grassland and 140 forest sites in three regions of Germany. Overall gamma diversity in grasslands and forests decreased over time indicating loss of species across sites and regions. In annually sampled grasslands, biomass, abundance and species number of arthropods declined by 67%, 78%, and 34%, respectively. The decline was consistent across trophic levels, mainly affected rare species, and its magnitude was independent of local land-use intensity. However, sites embedded in landscapes with higher cover of agricultural land showed a stronger temporal decline. In 30 forest sites with annual inventories, biomass and species number, but not abundance, decreased by 41% and 36%, respectively. This was supported by analyses of all forest sites sampled in 3year intervals. The decline affected rare and abundant species and trends differed across trophic levels. Our results show that there are widespread declines in arthropods that concern biomass, abundance and diversity across trophic levels. Declines in forests demonstrate that arthropod loss is not restricted to open habitats. Our results 4 suggest that major drivers of arthropod decline act at larger spatial scales, and are, at least for grasslands, associated with agriculture at the landscape level.This implies that land-use relevant policies need to address the landscape scale to mitigate negative effects of land-use practices. Main textMuch of the debate on the human-induced biodiversity crisis has focused on vertebrates 3 , yet population decline and extinctions may be even more substantial in small organisms such as terrestrial arthropods 4 . Recent studies report declines in biomass of flying insects 2 , diversity of insect pollinators 5,6 , butterflies and moths 1,7-10 , hemipterans 11,12 and beetles 7,13,14 . Owing to the associated negative effects on food webs 15 , ecosystem functioning and ecosystem services 16 , the insect loss has spurred an intense public debate. However, time-series data on arthropods are rather limited and studies have so far focused on a small range of taxa 11,13,14 , few land-use and habitat types 12 or even on single sites 1,17 . In addition, many studies lack species information 2 or high temporal resolution 2,12 . Hence, it remains unclear whether reported declines in arthropods are a general phenomenon that is driven by similar mechanisms across land-use types, taxa and functional groups.The ...
Biodiversity experiments have shown that species loss reduces ecosystem functioning in grassland. To test whether this result can be extrapolated to forests, the main contributors to terrestrial primary productivity, requires large-scale experiments. We manipulated tree species richness by planting more than 150,000 trees in plots with 1 to 16 species. Simulating multiple extinction scenarios, we found that richness strongly increased stand-level productivity. After 8 years, 16-species mixtures had accumulated over twice the amount of carbon found in average monocultures and similar amounts as those of two commercial monocultures. Species richness effects were strongly associated with functional and phylogenetic diversity. A shrub addition treatment reduced tree productivity, but this reduction was smaller at high shrub species richness. Our results encourage multispecies afforestation strategies to restore biodiversity and mitigate climate change.
Through complementarity interactions, mixedspecies forests can be more productive than monocultures, and this effect can increase with tree-species richness. However, this is not always the case. This review examines the processes and stand structural attributes that can influence diversity-productivity relationships (DPRs); how they influence resource availability, resource uptake, and resource-use efficiency; and also describes some important differences between tree-diversity versus grassland-diversity experiments. The size of the complementarity effects caused by these processes and stand structures varies along spatial and temporal gradients in resource availability and climate. These spatial and temporal dynamics have now been examined in many studies, and the general patterns are summarized using a simple framework; complementarity is predicted to increase as the availability of resource BX^declines (or climatic condition X becomes harsher) if the species interactions improve the availability, uptake, or use efficiency of resource X (or interactions improve climatic condition X). Importantly, this framework differs from the stress-gradient hypothesis to account for a wider range of inter-specific plant interactions (not only facilitation) by considering contrasting methods used to quantify species interactions while accounting for stand structure. In addition, complementarity (as opposed to facilitation) for a given species combination can increase as growing conditions improve in forests, contrary to predictions of the stressgradient hypothesis with regards to facilitation. This review indicates that while the effects of tree-species diversity on growth and other forest functions are now receiving a lot of attention, far less is known about the effects of structural diversity on growth or forest functioning. Direct measurements of the processes, as opposed to focusing mainly on growth responses, could greatly contribute to our understanding of structural diversity effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.