We review the use of an exact renormalization group equation in quantum field theory and statistical physics. It describes the dependence of the free energy on an infrared cutoff for the quantum or thermal fluctuations. Non-perturbative solutions follow from approximations to the general form of the coarse-grained free energy or effective average action. They interpolate between the microphysical laws and the complex macroscopic phenomena. Our approach yields a simple unified description for O(N )-symmetric scalar models in two, three or four dimensions, covering in particular the critical phenomena for the second-order phase transitions, including the Kosterlitz-Thouless transition and the critical behavior of polymer chains. We compute the aspects of the critical equation of state which are universal for a large variety of physical systems and establish a direct connection between microphysical and critical quantities for a liquid-gas transition. Universal features of first-order phase transitions are studied in the context of scalar matrix models. We show that the quantitative treatment of coarse graining is essential for a detailed estimate of the nucleation rate. We discuss quantum statistics in thermal equilibrium or thermal quantum field theory with fermions and bosons and we describe the high temperature symmetry restoration in quantum field theories with spontaneous symmetry breaking. In particular we explore chiral symmetry breaking and the high temperature or high density chiral phase transition in quantum chromodynamics using models with effective four-fermion interactions.This work is dedicated to the 60th birthday of Franz Wegner. *
Prethermalization of the equation of state and the kinetic temperature to their equilibrium values occurs on time scales dramatically shorter than the thermal equilibration time. This is a crucial ingredient for the understanding of collisions of heavy nuclei or other nonequilibrium phenomena in complex quantum and classical many body systems. We also compare the chemical equilibration time with other characteristic time scales.
We explore the phase diagram of strongly interacting matter as a function of temperature and baryon number density, using a class of models for two-flavor QCD in which the interaction between quarks is modelled by that induced by instantons. Our treatment allows us to investigate the possible simultaneous formation of condensates in the conventional quark-anti-quark channel (breaking chiral symmetry) and in a quark-quark channel leading to color superconductivity: the spontaneous breaking of color symmetry via the formation of quark Cooper pairs. At low temperatures, chiral symmetry restoration occurs via a first order transition between a phase with low (or zero) baryon density and a high density color superconducting phase. We find color superconductivity in the high density phase for temperatures less than of order tens to 100 MeV, and find coexisting qq and qq condensates in this phase in the presence of a current quark mass. At high temperatures, the chiral phase transition is second order in the chiral limit and is a smooth crossover for nonzero current quark mass. A tricritical point separates the first order transition at high densities from the second order transition at high temperatures. In the presence of a current quark mass this tricritical point becomes a second order phase transition with Ising model exponents, suggesting that a long correlation length may develop in heavy ion collisions in which the phase transition is traversed at the appropriate density. †
Strongly correlated systems far from equilibrium can exhibit scaling solutions with a dynamically generated weak coupling. We show this by investigating isolated systems described by relativistic quantum field theories for initial conditions leading to nonequilibrium instabilities, such as parametric resonance or spinodal decomposition. The nonthermal fixed points prevent fast thermalization if classical-statistical fluctuations dominate over quantum fluctuations. We comment on the possible significance of these results for the heating of the early Universe after inflation and the question of fast thermalization in heavy-ion collision experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.