Abstract. The Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG) products provide quasi-global (60 • N-60 • S) precipitation estimates, beginning March 2014, from the combined use of passive microwave (PMW) and infrared (IR) satellites comprising the GPM constellation. The IMERG products are available in the form of near-real-time data, i.e., IMERG Early and Late, and in the form of post-real-time research data, i.e., IMERG Final, after monthly rain gauge analysis is received and taken into account. In this study, IMERG version 3 Early, Late, and Final (IMERG-E,IMERG-L, and IMERG-F) half-hourly rainfall estimates are compared with gauge-based gridded rainfall data from the WegenerNet Feldbach region (WEGN) high-density climate station network in southeastern Austria. The comparison is conducted over two IMERG 0.1 • × 0.1 • grid cells, entirely covered by 40 and 39 WEGN stations each, using data from the extended summer season (April-October) for the first two years of the GPM mission. The entire data are divided into two rainfall intensity ranges (low and high) and two seasons (warm and hot), and we evaluate the performance of IMERG, using both statistical and graphical methods. Results show that IMERG-F rainfall estimates are in the best overall agreement with the WEGN data, followed by IMERG-L and IMERG-E estimates, particularly for the hot season. We also illustrate, through rainfall event cases, how insufficient PMW sources and errors in motion vectors can lead to wide discrepancies in the IMERG estimates. Finally, by applying the method of Villarini and Krajewski (2007), we find that IMERG-F halfhourly rainfall estimates can be regarded as a 25 min gauge accumulation, with an offset of +40 min relative to its nominal time.
An operational weather diagnostics application for automatic generation of wind fields in near–real time from observations delivered by the high-density WegenerNet meteorological station network in the Feldbach region of Austria is introduced. The purpose of the application is to empirically provide near-surface wind fields of very high spatial and temporal resolution for evaluating convection-permitting climate models as well as investigating weather and climate variability on a local scale. The diagnostic California Meteorological Model (CALMET) is used as the core tool. This model computes 3D wind fields based on observational weather data, a digital elevation model, and land-use categories. The application first produces the required input files from the WegenerNet stations and subsequently runs the CALMET model based on this input. In a third step the modeled wind fields are stored in the WegenerNet data archives every 30 min with a spatial resolution of 100 m × 100 m, while also generating averaged weather and climate products during postprocessing. The performance of the modeling against station observations, for which wind speeds were classified into weak and strong wind speeds, is evaluated and reasonably good results were found for both wind speed classes. The statistical agreement for the vector-mean wind speed is slightly better for weak wind speeds than for strong ones while the difference between modeled and observed wind directions is smaller for strong wind speeds than for weak ones. The application is also a valuable tool for other high-density networks.
Abstract. The ability of radar-rain gauge merging algorithms to precisely analyse convective precipitation patterns is of high interest for many applications, e.g. hydrological modelling, thunderstorm warnings, and, as a reference, to spatially validate numerical weather prediction models. However, due to drawbacks of methods like crossvalidation and due to the limited availability of reference data sets on high temporal and spatial scales, an adequate validation is usually hardly possible, especially on an operational basis. The present study evaluates the skill of very high-resolution and frequently updated precipitation analyses (rapid-INCA) by means of a very dense weather station network (WegenerNet), operated in a limited domain of the southeastern parts of Austria (Styria). Based on case studies and a longer-term validation over the convective season 2011, a general underestimation of the rapid-INCA precipitation amounts is shown by both continuous and categorical verification measures, although the temporal and spatial variability of the errors is -by convective nature -high. The contribution of the rain gauge measurements to the analysis skill is crucial. However, the capability of the analyses to precisely assess the convective precipitation distribution predominantly depends on the representativeness of the stations under the prevalent convective condition.
Abstract. A weather diagnostic application for automatic generation of gridded wind fields in near-real-time, recently developed by the authors Schlager et al. (2017), is applied to the WegenerNet Johnsbachtal (JBT) meteorological station network. This station network contains 11 meteorological stations at elevations from about 600 to 2200 m in a mountainous region in the north of Styria, Austria. The application generates, based on meteorological observations with a temporal resolution of 10 min from the WegenerNet JBT, mean wind and wind gust fields at 10 and 50 m height levels with a high spatial resolution of 100 m × 100 m and a temporal resolution of 30 min. These wind field products are automatically stored to the WegenerNet data archives, which also include long-term averaged weather and climate datasets from post-processing. The main purpose of these empirically modeled products is the evaluation of convection-permitting dynamical climate models as well as investigating weather and climate variability on a local scale. The application's performance is evaluated against the observations from meteorological stations for representative weather conditions, for a month including mainly thermally induced wind events (July 2014) and a month with frequently occurring strong wind events (December 2013). The overall statistical agreement, estimated for the vector-mean wind speed, shows a reasonably good modeling performance. Due to the spatially more homogeneous wind speeds and directions for strong wind events in this mountainous region, the results show somewhat better performance for these events. The difference between modeled and observed wind directions depends on the station location, where locations along mountain slopes are particularly challenging. Furthermore, the seasonal statistical agreement was investigated from 5-year climate data of the WegenerNet JBT in comparison to 9-year climate data from the high-density WegenerNet meteorological station network Feldbach Region (FBR) analyzed by Schlager et al. (2017). In general, the 5-year statistical evaluation for the JBT indicates similar performance as the shorter-term evaluations of the two representative months. Because of the denser WegenerNet FBR network, the statistical results show better performance for this station network. The application can now serve as a valuable tool for intercomparison with, and evaluation of, wind fields from high-resolution dynamical climate models in both the WegenerNet FBR and JBT regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.