As a rule, organelles in eukaryotic cells can derive only from pre-existing organelles. Peroxisomes are unique because they acquire their lipids and membrane proteins from the endoplasmic reticulum (ER), whereas they import their matrix proteins directly from the cytosol. We have discovered that peroxisomes are formed via heterotypic fusion of at least two biochemically distinct preperoxisomal vesicle pools that arise from the ER. These vesicles each carry half a peroxisomal translocon complex. Their fusion initiates assembly of the full peroxisomal translocon and subsequent uptake of enzymes from the cytosol. Our findings demonstrate a remarkable mechanism to maintain biochemical identity of organelles by transporting crucial components via different routes to their final destination.
The regulatory effect of growth hormone (GH) on its target cells is mediated via the GH receptor (GHR). GH binding to the GHR resultsin the formation of a GH-(GHR) 2 complex and the initiation of signal transduction cascades via the activation of the tyrosine kinase JAK2. Subsequent endocytosis and transport to the lysosome of the ligand-receptor complex is regulated via the ubiquitin system and requires the presence of an intact ubiquitin-dependent endocytosis (UbE) motif in the cytosolic tail of the GHR. Recently, the model of ligand-induced receptor dimerization has been challenged. In this study, ligand-independent GHR dimerization is demonstrated in the endoplasmic reticulum and at the cell surface by coimmunoprecipitation of an epitope-tagged truncated GHR with wild-type GHR. In addition, evidence is provided that the extracellular domain of the GHR is not required to maintain this interaction. Internalization of a chimeric receptor, which fails to dimerize, is independent of an intact UbE-motif. Therefore, we postulate that dimerization of GHR molecules is required for ubiquitin system-dependent endocytosis.
The endoplasmic reticulum (ER) is a major cellular 'production factory' for many membrane and soluble proteins. A quality control system ensures that only correctly folded and assembled proteins leave the compartment. The low-density lipoprotein receptor (LDLR) is the prototype of a large family of structurally homologous cell surface receptors, which fold in the ER and function as endocytic and signaling receptors in a wide variety of cellular processes. Patients with familial hypercholesterolemia carry single or multiple mutations in their LDLR, which leads to malfunction of the protein, in most patients through misfolding of the receptor. As a result, clearance of cholesterol-rich LDL particles from the circulation decreases, and the elevated blood cholesterol levels cause early onset of atherosclerosis and an increased risk of cardiac disease in these patients. In this review, we will elaborate on the structural aspects of the LDLR and its folding pathway and compare it to other LDLR family members.
GH binding to cell surface-localized GH receptors (GHRs) induces a conformational change of the dimerized receptors, resulting in activation of Janus kinase 2 and downstream signaling pathways. Interactions between the extracellular subdomain 2 of adjacent GHR polypeptides result in a 500-A2 contact interface, which has previously been suggested to stabilize the GH-(GHR)2 complex. In this study, we investigated further the role of subdomain 2 in GHR function. Amino acids that participate in (e.g. aspartic acid 152, tyrosine 200, or serine 201) or lie close to (e.g. asparagine 143 or cysteine 241) the contact interface were mutated in rabbit GHR. Surprisingly, none of the mutations affected GHR dimerization, as demonstrated by coimmunoprecipitation of a truncated, epitope-tagged GHR. However, signal transduction of GHR(D152H), GHR(Y200D), and GHR(S201K) mutants was precluded. More insight into the molecular mechanism of the signaling defect was obtained when we examined the effect of the mutations on the integrity of the GH-(GHR)2 complex in a protease-protection assay. In contrast to wild-type GHR, GHR(N143K), and GHR(C241S), the GHR(D152H), GHR(Y200D), and GHR(S201K) mutants were not protected against protease digestion by GH, indicating that a structural change is prevented. Together, we provide new evidence for a critical role of aspartic acid 152, tyrosine 200, and serine 201 of the GHR contact interface in the GH-induced conformational change to a signaling-competent complex rather than in GHR dimerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.