Radiographic enlargement of bone tunnels following anterior cruciate ligament (ACL) reconstruction has been recently introduced in the literature; however, the etiology and clinical relevance of this phenomenon remain unclear. While early reports suggested that bone tunnel enlargement is mainly the result of an immune response to allograft tissue, more recent studies imply that other biological as well as mechanical factors play a more important role. Biological factors associated with tunnel enlargement include foreign-body immune response (against allografts), non-specific inflammatory response (as in osteolysis around total joint implants), cell necrosis due to toxic products in the tunnel (ethylene oxide, metal), and heat necrosis as a response to drilling (natural course). Mechanical factors contributing to tunnel enlargement include stress deprivation of bone within the tunnel wall, graft-tunnel motion, improper tunnel placement, and aggressive rehabilitation. Graft-tunnel motion refers to longitudinal and transverse motion of the graft within the bone tunnel and can occur with various graft types and fixation techniques. Aggressive rehabilitation programmes may contribute to tunnel enlargement as the graft-bone interface is subjected to early stress before biological incorporation is complete. Further basic research is required to verify the effect of the various proposed factors on the etiology of bone tunnel enlargement. We recommend that routine follow-up examinations after ACL reconstruction should include the measurement of bone tunnel size in order to contribute to a better understanding of the incidence, time course, and clinical relevance of this phenomenon. Improved and more anatomical surgical fixation techniques may be useful for the prevention of bone tunnel enlargement.
The results highlight the important role of KS on the interaction between trunk angle, joint kinetics, and postural dynamic stability during landing and show that ACL-reconstructed patients use an analogous feedforward strategy (e.g., more flexed trunk) to that used in their ACL-deficient state, aiming to compensate for KS deficits and thereby sacrificing postural dynamic stability and increasing the risk of loss of balance during landing maneuvers.
The objective of this study was to determine the relative motion of a quadruple hamstring graft within the femoral bone tunnel (graft-tunnel motion) under tensile loading. Six graft constructs were prepared from the semitendinosus and gracilis tendons of human cadavers and were fixed with a titanium button and polyester tape within a bone tunnel in a cadaveric femur. Three different lengths of polyester tape (15, 25, and 35 mm loops) were evaluated. The femur was held stationary and uniaxial tensile loads were applied to the distal end of the graft using a materials testing machine. Each construct was subjected to loading for ten cycles with upper limits of 50 N, 100 N, 200 N and 300 N. Graft-tunnel motion was then determined using the distances between reflective tape markers placed on the hamstring graft and at the entrance to the femoral bone tunnel, which were tracked with a high-resolution video system. Graft-tunnel motion was found to range from 0.7 +/- 0.2 mm to 3.3 +/- 0.2 mm, and significant increases in graft-tunnel motion were observed with increasing tensile loads (P < 0.05). Shorter tape length (15 mm) resulted in significantly less motion when compared to longer tape length (35 mm) (P < 0.05). We conclude that graft-tunnel motion is significant and should be considered when using this fixation technique. Early stress on the graft, as seen in postoperative rehabilitation exercises and athletic activities, may cause large graft-tunnel motion before graft incorporation is complete. A shorter distance between the tendon tissue and the titanium button is recommended to minimize the amount of graft-tunnel motion. Alternative fixation materials to polyester tape, or different fixation techniques, need to be developed such that graft-tunnel motion can be reduced. Further studies are needed to evaluate the effect of graft-tunnel motion on graft incorporation in the bone tunnel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.