The so-called "yellow pigment" content of durum wheat has been used for a long time as an indicator of the color quality of durum wheat and pasta products. For decades the chemical nature of these pigments has been assigned to carotenoids, mainly to the xanthophyll lutein and its fatty acid esters. The chemical composition of the yellow pigments of eight German durum wheat cultivars was studied. Grains were milled on a laboratory mill. Pigment extraction of millstream fractions was performed according to the optimized ICC standard method 152 procedure, and the chemical composition of the extract was analyzed by isocratic reversed phase high-performance liquid chromatography. all-trans-Lutein ranged from 1.5 to 4 mg kg(-1), and zeaxanthin was found in traces. No lutein esters and carotenes were detected. Surprisingly, the fraction of carotenoids of the complete yellow pigment content amounted to only 30-50% of the yellow pigment quantities, so there are still compounds in durum wheat not yet identified that contribute considerably to the yellow color of the grain extracts. The isolation and chemical identification of those pigments are under investigation.
Fermentation of dietary fibre by the gut microflora may enhance levels of SCFA, which are potentially chemoprotective against colon cancer. Functional food containing wheat aleurone may prevent cancer by influencing cell cycle and cell death. We investigated effects of fermented wheat aleurone on growth and apoptosis of HT29 cells. Wheat aleurone, flour and bran were digested and fermented in vitro. The resulting fermentation supernatants (fs) were analysed for their major metabolites (SCFA, bile acids and ammonia). HT29 cells were treated for 24-72 h with the fs or synthetic mixtures mimicking the fs in SCFA, butyrate or deoxycholic acid (DCA) contents, and the influence on cell growth was determined. Fs aleurone was used to investigate the modulation of apoptosis and cell cycle. The fermented wheat samples contained two-to threefold higher amounts of SCFA than the faeces control (blank), but reduced levels of bile acids and increased concentrations of ammonia. Fs aleurone and flour equally reduced cell growth of HT29 more effectively than the corresponding blank and the SCFA mixtures. The EC 50 (48 h) ranged from 10 % (flour) to 19 % (blank). Markedly after 48 h, fs aleurone (10 %) significantly induced apoptosis and inhibited cell proliferation by arresting the cell cycle in the G0/G1 phase. In conclusion, fermentation of wheat aleurone results in a reduced level of tumour-promoting DCA, but higher levels of potentially chemopreventive SCFA. Fermented wheat aleurone is able to induce apoptosis and to block cell cycle -two essential markers of secondary chemoprevention.
Dietary fibers are fermented by the gut flora to yield short chain fatty acids (SCFAs), which inhibit the growth of tumor cells, induce glutathione S-transferases (GSTs), and protect cells from the genotoxic activity of 4-hydroxynonenal (HNE). Here, we investigated effects of wheat bran-derived arabinoxylans and fermentation products on these parameters of chemoprevention. Newly isolated water extractable (WeAx) and alkali extractable arabinoxylans (AeAx) were fermented under anaerobic conditions with human feces. Resulting fermentation supernatants (FSs) were analyzed for SCFAs and used to treat HT29 colon cancer cells. Cell growth, cytotoxicity, antigenotoxicity against hydrogen peroxide (H2O2) or HNE, and GST activity were determined. Nonfermented WeAx decreased H2O2-induced DNA damage by 64%, thus demonstrating chemoprotective properties by this nonfermented wheat bran fiber. The fermentation of WeAx and AeAx resulted in 3-fold increases of SCFA, but all FSs (including the control without arabinoxylans) inhibited the growth of the HT29 cells, reduced the genotoxicity of HNE, and enhanced the activity of GSTs (FS WeAx, 2-fold; FS AeAx, 1.7-fold; and control FS, 1.4-fold), which detoxify HNE. Thus, increases in SCFAs were not reflected by enhanced functional effects. The conclusion is that fermentation mixtures contain modulatory compounds that arise from the feces and might add to the effectiveness of SCFAs.
Sulfated glycosaminoglycans were extracted from arteriosclerotic and adjacent nonarteriosclerotic areas of human aortas from persons ages 28 to 83 years; the glycosaminoglycans were compared with the cholesterol and triglyceride content of the tissues. Sulfated glycosaminoglycans were isolated after proteolytic digestion of defatted arterial tissue and were quantified after reductive labeling with NaB3H4. The amount of glycosaminoglycans in the aorta increased with the age of the person and the cholesterol content (degree of arteriosclerosis) of the aorta. The proportion of chondroitin sulfate/dermatan sulfate increased significantly with age and cholesterol content, whereas the corresponding amounts of heparan sulfate decreased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.