A design criterion that permits truly omnidirectional reflectivity for all polarizations of incident light over a wide selectable range of frequencies was used in fabricating an all-dielectric omnidirectional reflector consisting of multilayer films. The reflector was simply constructed as a stack of nine alternating micrometer-thick layers of polystyrene and tellurium and demonstrates omnidirectional reflection over the wavelength range from 10 to 15 micrometers. Because the omnidirectionality criterion is general, it can be used to design omnidirectional reflectors in many frequency ranges of interest. Potential uses depend on the geometry of the system. For example, coating of an enclosure will result in an optical cavity. A hollow tube will produce a low-loss, broadband waveguide, whereas a planar film could be used as an efficient radiative heat barrier or collector in thermoelectric devices.
Monolithic lasers on Si are ideal for high-volume and large-scale electronic-photonic integration. Ge is an interesting candidate owing to its pseudodirect gap properties and compatibility with Si complementary metal oxide semiconductor technology. Recently we have demonstrated room-temperature photoluminescence, electroluminescence, and optical gain from the direct gap transition of band-engineered Ge-on-Si using tensile strain and n-type doping. Here we report what we believe to be the first experimental observation of lasing from the direct gap transition of Ge-on-Si at room temperature using an edge-emitting waveguide device. The emission exhibited a gain spectrum of 1590-1610 nm, line narrowing and polarization evolution from a mixed TE/TM to predominantly TE with increasing gain, and a clear threshold behavior.
We analyze the optical gain of tensile-strained, n-type Ge material for Si-compatible laser applications. The band structure of unstrained Ge exhibits indirect conduction band valleys (L) lower than the direct valley (Gamma) by 136 meV. Adequate strain and n-type doping engineering can effectively provide population inversion in the direct bandgap of Ge. The tensile strain decreases the difference between the L valleys and the Gamma valley, while the extrinsic electrons from n-type doping fill the L valleys to the level of the Gamma valley to compensate for the remaining energy difference. Our modeling shows that with a combination of 0.25% tensile strain and an extrinsic electron density of 7.6x10(19)/cm(3) by n-type doping, a net material gain of ~400 cm(-1) can be obtained from the direct gap transition of Ge despite of the free carrier absorption loss. The threshold current density for lasing is estimated to be ~6kA cm(-2) for a typical edgeemitting double heterojunction structure. These results indicate that tensile strained n-type Ge is a good candidate for Si integrated lasers.
Electrically pumped lasing from Germanium-on-Silicon pnn heterojunction diode structures is demonstrated. Room temperature multimode laser with 1mW output power is measured. Phosphorous doping in Germanium at a concentration over 4x1019cm-3 is achieved. A Germanium gain spectrum of nearly 200nm is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.